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0
CHAPTER 0: BASICS OF MATLAB

This Appendix provides implementation in MATLAB of some of the examples that are worked
out in the chapters of this book in R.! We use the version MATLAB.R2021b.

MATLAB has been designed for engineers and scientists to analyze and visualize data,
develop algorithms, and create models and applications. Basic functions for data visual-
ization and statistical data analysis are included in the main MATLAB software while the
statistical analysis tools have been enriched in the Statistics and Machine Learning
Toolbox (https://mathworks.com/products/statistics.html) and the Simulink environment
(https://mathworks.com/products/simulink.html). A familiarity with MATLAB is assumed.
The MATLAB support (https://mathworks.com/support.html) and the help center of the
Statistics and Machine Learning Toolbox (https://mathworks.com/help/stats/) offer
a great help with overview and documentation of available functions, examples and tutorials.
Furthermore, there is a variety of introductions to MATLAB language available, e.g., Martinez
and Cho (2015, 2016), Metcalfe et. al. (2019) and Rogers and Girolami (2017). The MATLAB
support provides a rich list of books on Data Science and Statistics with implementation in
MATLAB (https://mathworks.com/academia/books.html).

C0.1 MATLAB Preliminaries

MATLAB has a very user-friendly desktop environment that includes the menu bar with
three tabs (HOME, PLOTS, APS) and the following main windows: Command Window, Current
Folder, and Workspace (see Figure C0.1). Commands are entered in the Command Window
after the MATLAB prompt >>. All variables that are in the current workspace are listed in the
Workspace window. Double-clicking one of them opens it a spreadsheet in the Variables
window. The Current Folder shows all the files in the folder given in the red-framed area
in Figure C0.1. The current folder can be selected by the Browse for folder on its left.
Double-clicking on a data file in the Current Folder window activates for this file the
Import Data button of the HOME tab (red dashed framed in Figure CO0.1), to be discussed
in Section CO0.2.

The most straight-forward way to get help and access the documentation of functions
in MATLAB is through the Help button (green dashed framed in Figure C0.1). Typing help
in the Command Window followed by the name of a function, provides brief information on
this function, as shown in Figure C0.2 for the bar function that constructs a bar chart.

Comments in MATLAB follow the % symbol while, as in R, a command followed by a ”;”
does not print the result of the assignment or calculation. The code to be typed in the
Command Window for a simple example defining a row vector and dividing its entries by a
scalar (here 2) follows.

>> 7, create a row vector without printing it:

IThis is working draft that will be gradually expanded.
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FIGURE C0.1: MATLAB-desktop screen—shot.

>> a=[1 2 3 4]; 7 equivalent to a=[1,2,3,4]; or a=1:4;

>> b=a/2 % devide all elements of a by 2
b =
0.5000 1.0000 1.5000 2.0000

The code is shown in this appendix as it appears in the Command Window, with the
MATLAB prompt, which of course has to be omitted when typing the code.

The standard arithmetic operators (+, -, *) are used in MATLAB. Similarly to R, calcu-
lations apply on matrices. A column vector is constructed by separating its elements by
semicolons, as shown below.

>> ¢c=[1;2;3;4] % c is equal to transpose(a)
c =
1
2
3
4
>> (a*c)"2 % product of (1x4) and (4x1) vectors to the power 2
ans =
900
>> ml=c*a % product of (4x1) and (1x4) vectors
ml =
1 2 3 4
2 4 6 8
3 6 9 12
4 8 12 16
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FIGURE C0.2: Output of the help bar command in the Command Window.

|
C0.2 Data Structures and Data Input
Analogously to R, MATLAB offers a variety of data types:

e Arrays for grouping objects of the same type (e.g., numeric, string, or categorical). Ar-
rays can be scalars, vectors, matrices (i.e., two-dimensional arrays) or multi-dimensional
arrays.

Cell Arrays for grouping objects of different type. Different cells can have data of dif-
ferent type and different size but all rows of a cell array have the same number of cells.
Otherwise, a cell array has the structure of a numeric or string array.

Structures are arrays with named fields that can contain data of varying types and sizes.

Tables are arrays in tabular form with named columns which can be of different type.

Dataset Arrays for storing variables (in columns) with heterogeneous data types (e.g.,
combine numeric data, logical data, cell arrays of character vectors, and categorical
arrays) measured over cases (given in rows). They are convenient for data sets and
statistical data analysis (analogous to the data frames of R).

The first four are data types of the base MATLAB while Dataset Arrays is of the
Statistics and Machine Learning Toolbox. For a detailed description of the powerful
options of the data types and examples, see in https://mathworks.com/support.html.

Data files of various formats (text files, spreadsheets and other file formats) are easily
read in MATLAB. Commonly, data files for statistical analysis are in spreadsheets (e.g., of
R data frame type with rows corresponding to cases and columns to variables measured).
Such files (R .dat files, .txt data files, excel .xls files, SAS data files) can be easily read
through the Import Tool activated by clicking the Import Data button of the HOME tab
(red dashed framed in Figure C0.1). The tool asks for the data file to be opened and the
selected file appears in the Import window. Figure C0.3 shows the Import window for


https://mathworks.com/support.html
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the Carbon.dat data file on per-capita carbon dioxide emissions for 31 European nations
analyzed in Chapter 1 (to be downloaded from the book’s webpage).

After selecting the variables and cases that should be read, and setting the type of each
variable from the types offered (see dashed lined red frame in Figure C0.3, left), the data
are imported in the workspace by selecting Import Data in the Import Selection button
(see red frame in Figure C0.3, left). Clicking on Carbon in the Workspace window, the
Variables window opens and the data spreadsheet is shown (see Figure C0.3, right).

FIGURE C0.3: Import window (left) and Variables window (right) for Carbon.dat data
set.
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CHAPTER 1: MATLAB FOR DESCRIPTIVE
STATISTICS

C1l.1 Random Number Generation

The example of random number generation in Section 1.3.1 can be implemented in MATLAB
using the randsample function of the Statistics and Machine Learning Toolbox. The
content of the Command Window for the example follows.

>> y = randsample(1:60,5,’false’) % sample 5 integrers from 1 to 60 without repacement
y =
43 6 3 2 17

>> y = randsample(1:60,5,’true’) 7% sample with repacement
y =
58 33 9 9 16

Examples of random number generation from various disrtibutions in MATLAB are shown in
Sections C1.5, C2.1 and C2.3.

C1l.2 Summary Statistics and Graphs for Quantitative Variables
C1.2.1 Descriptive statistics for carbon dioxide emissions

The following code finds some descriptive statistics for the data in file Carbon.dat, imported
in the Workspace in Section C0.2.

>> summary = groupsummary (Carbon, [],{"mean","std","min","max"},"C02")

summary =

1x5 table

GroupCount mean_C02 std_C02 min_C02 max_C02

31 5.8194 1.9649 2 9.9
>> % alternatively, you can try:
>> [mean,std,min,max] = grpstats(Carbon.C02,[],{"mean","std","min","max"}) % output not shown
>> summary = groupsummary(Carbon, [],"all","C02") % all available statistics (output not shown)
>> Q = quantile(Carbon.C02, [0.25,0.5,0.75]) % computes the quantiles of C02
qQ =
4.3250 5.4000 6.8000

The histogram of CO2 with 8 bins of equal length can be derived in Python (see Figure
C1.1), as shown below:
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xlabel(’C0O2 emissions’)
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| >> histogram(Carbon.C02, 8)

ylabel(’Count’)

2 3 4 5 6 7 8 9 10 11
CO2 emissions

FIGURE C1.1: Histogram for frequency distribution of European CO2 values.

The box plot of CO2 (see Figure C1.2) is produced as follows.

>>  boxplot(Carbon.C02)

xlabel(’31 European nations’)

ylabel(’CO2 emissions’)

Replacing the boxplot function call above with boxplot (Carbon.C02, ’Whisker’,1)
produces a boc plot with the whisker length specified as 1.0 times the interquartile range.
Data points beyond the whisker are displayed with +.

FIGURE C1.2:

CO2 emissions
o

2t —

1
31 European nations

Box plot of CO2 emission values for European nations.

C1.2.2 Side-by-side box plots for U.S. and Canadian murder rates

Side-by-side box plots are illustrated in Section 1.4.5 for comparing the murder rates in U.S.
and Canada. After importing the data in the Workspace, the code that follows constructs
the side-by-side box plot for this example in MATLAB, shown in Figure C1.3.
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In order to illustrate data import in MATLAB from .txt files separating the columns by a
77 (instead of a tab), we read the data from the Murder2.txt file (to be downloaded from
the book’s webpage). Such files are not opened in a spreadsheet when double clicking on
them in the Current Folder window but need to be imported by the Import Data button.

>> boxplot (Murder2.murder,Murder2.nation)

xlabel(’Nation’)
ylabel (’Murder rates’)

25 F T T |

20 - 1

Murder rates

PR I
sl |
N
= ‘
—1
0F 1 i
‘ ‘
Canada us

Nation

FIGURE C1.3: Side-by-side box plots for U.S. and Canadian murder rates.

For computing the quantiles per nation we need to define the functions quant1, quant?2
and quant3 in MATLAB code files (.m). Indicatively we provide below one of them:

function [ql] = quanti(m)
ql=quantile(m,0.25);
end

The code given below reports summary statistics by nation:

>> summary2 = groupsummary(Murder2,{"nation"},{"mean","std","min", "max"}, "murder")

summary2 =
2x6 table
nation GroupCount mean_murder std_murder min_murder max_murder
Canada 10 1.673 1.1844 0 4.07
Us 51 5.2529 3.7254 1 24.2

>> [Group,Nation] = findgroups(Murder2.nation);

>> Group = int8(Group);

>> Q1 = splitapply(@quanti,Murder2.murder,Group); 7% functions quantl, quant2 and quant3
>> Q2 = splitapply(@quant2,Murder2.murder,Group); 7% are defined in MATLAB-code files (.m)
>> Q3 = splitapply(@quant3,Murder2.murder,Group); % as explained above

>> T=table(Nation,Q1,Q2,Q3)

T =
2x4 table
Nation Q1 Q2 Q3
Canada 0.99 1.735 1.88

Us 2.625 5 6.575
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C1.3 Descriptive Statistics for Bivariate Quantitative Data

Fr the example in Section 1.5.1 relating statewide suicide rates in U.S. to the percentage
of people who own guns, we show next code to construct the scatter plot in Figure 77
(left) as well as the scatter plot with the fitted regression line (see Figure ?7?, right). The
associated Pearson’s correlation coefficient and the simple linear regression model fit are also
derived. The data file Guns_Suicide.dat is imported in the MATLAB Workspace, following
the procedure described in Section C0.2 for the Carbon.dat data file, and saved under
GunsSuicide.

% print just the first 3 lines of the data file:
>> head(GunsSuicide,3)
ans =

3x3 table

state guns suicide

"AK" 60.6 23.3
"AL" 57.2 14.9
"AR" 568.3 17.4

% scatterplot:

>> scatter(GunsSuicide,’guns’,’suicide’)

% addition of the regression line:

>> regl=1lsline; regl.Color=[0 0.4470 0.7410];regl.LineWidth=1.5;

>> Guns = GunsSuicide.guns; Suicide = GunsSuicide.suicide;
>> R=corrcoef (Guns,Suicide) # correlation matrix between
# variables Guns and Suicide
R =
1.0000 0.7387 # corr. = 0.739 between guns and suicide
0.7387 1.0000

% Linear regression fit:
>> modell = fitlm(Guns,Suicide)

modell =
Linear regression model:
y 1+ x1

Estimated Coefficients:

Estimate SE tStat pValue
(Intercept) 7.3901 1.0372 7.1253 4.2432e-09
x1 0.19356 0.025234 7.6708 6.1083e-10

Number of observations: 51, Error degrees of freedom: 49
Root Mean Squared Error: 2.65

R-squared: 0.546, Adjusted R-Squared: 0.536

F-statistic vs. constant model: 58.8, p-value = 6.11e-10
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FIGURE C1.4: Scatterplot relating state-level data in the U.S. on percent gun ownership
and suicide rate

C1.4 Descriptive Statistics for Bivariate Categorical Data

We next show code for forming a contingency table in MATLAB for the example in Section
1.5.2 of cross-classifying race and political party identification for data from the 2018 General
Subject Survey, after importing the data in the MATLAB Workspace. We also compute the
Chi-squared test of independence (see Section 5.4.4) and the associated p-value.

>> [conttab,chi2,p,labels] = crosstab(PartyID.race,PartyID.id)

conttab =
281 65 30
124 77 52
633 272 704

chi2 =
233.0352

p=
2.9320e-49

labels =
3x2 cell array
{’black’} {’Democrat’ }
{’other’} {’Independe’}
{’white’} {’Republica’}

>> colmarg = sum(conttab,1) % find column marginals

ans =

1038 414 786
% derivation of joint probability table:
>> probtable = conttab/sum(colmarg)

probtable =
0.1256 0.0290 0.0134
0.0554 0.0344 0.0232
0.2828 0.1215 0.3146

# derivation of conditional column probabilities (within column) tables:
>> conttab./repmat (sum(conttab,1),[3 1])
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0.2707 0.1570 0.0382
0.1195 0.1860 0.0662
0.6098 0.6570 0.8957

There is no direct option in MATLAB to construct a mosaic plot.

C1.5 Simulating Samples from a Bell-Shaped Population

The simulation example in Section 1.5.3 took two random samples of size n = 30 each
from a bell-shaped population (specifically, the normal distribution introduced in Section
2.5.1) with a mean of 100 and a standard deviation of 16. The following code performs
the simulation, saves the simulated numbers in a column vector, finds sample means and
standard deviations, and constructs histograms:

% simulates a column vector (30x1) from N(100, 16\"2):
>> y1 = normrnd(100,16,30,1); mean(yl)
ans =

102.4127

>> std(y1)
ans =
15.5943

>> hist(y1)

You may simulate other samples and compare the sample means, the standard deviations
and the histograms that are derived each time. Repeat the procedure simulating samples
of larger size, say 200.

This example illustrates that descriptive statistics such as the sample mean can them-
selves be regarded as variables, their values varying from sample to sample. Chapter 3
provides results about the nature of that variation.



2

CHAPTER 2: MATLAB FOR PROBABILITY
DISTRIBUTIONS

C2.1 Simulating a Probability as a Long-Run Relative Frequency

We illustrate the definition of the probability of an outcome as the long-run relative fre-
quency of that outcome in n observations, with n taking values 100, 1000, 10000, 100000,
1000000, and with probability 0.20 for each observation:

% proportion of "heads" in 100, 1000, 10000, 100000, 1000000 flips:
>> x1 = binornd(100,0.2); x1/100
ans =

0.1700

>> x2 = binornd(1000,0.2); x2/1000
ans =
0.1920

>> x3 = binornd(10000,0.2); x3/10000
ans =
0.1993

>> x4 = binornd(100000,0.2); x4/100000
ans =

0.1994

>> x5 = binornd(100000,0.2); x5/100000
ans =

0.1996

C2.2 MATLAB Functions for Discrete Probability Distributions

Discrete probability distributions that are directly supported in MATLAB can be found in
https://uk.mathworks.com/help/stats/discrete-distributions.html. We shall illustrate here
for the binomial, Poisson and multinomial.

C2.2.1 Binomial Distribution

A binomial probability distribution object BinomialDistribution can be generated either
by fitting the binomial distribution to a specific data set or by specifying its parameter
values. Such an object has several options, including calculation of pmf or cdf values and
random number generation. The following shows code for computing binomial probabilities

11
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and plotting a binomial pmf for the example in Section 2.4.2 about the Hispanic composition
of a jury list, which has n =12 and 7 = 0.20. The plot is provided in Figure C2.1.

>> binopdf(1,12,0.2) % binomial P(Y=1) when n=12, pi=0.20
ans =
0.2062
>> binocdf(1,12,0.2) % binomial P(Y=0)+P(Y=1) when n=12, pi=0.20
ans =
0.2749
>> y=0:12; p=binopdf(y,12,0.2); stem(y,p) ’% alternatively as a bar-chart: bar(y,p)
>> xlabel(’y’); ylabel(°P(Y=y)’)

0.3 0.3

0.25 0.25

02F 02

Y=y)

7
0.15 > 0.15
o

P
©

0.1 0.1¢

0.05 ¢ 0.05

FIGURE C2.1: Probability mass function of (i) a binomial random variable with n = 12 and
m=0.2 (left) and a Poisson random variable with \ = 2.3.

C2.2.2 Poisson Distribution

For a Poisson distribution, probabilities of individual values using the pmf or of a range of
values using the cdf, such as in the example in Section 2.4.7, can be found as follows:

>> poisspdf(0,2.3) % P(Y=0) if Poisson mean = 2.3
ans =
0.1003

% Difference of cdf values at 130 and 69 for Poisson with mean = 100:
>> poisscdf(130,100) - poisscdf(69,100)
ans =

0.9976

% Probability within 2 stand. deviations of mean (from 80 to 120):
>> poisscdf(120,100) - poisscdf (80,100)
ans =
0.9547
% Plot of the pmf of a Poisson(2.3), provided in Figure C2.1:
>> y = 0:15; p = poisspdf(y, 2.3)
>> stem(y,p); xlabel(’y’); ylabel(’P(Y=y)’)

C2.2.3 Multinomial Distribution

Next we provide the MATLAB code for calculating the pmf of a multinomial distribution and
for plotting it (see Figure C2.2).
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>> p = [0.3 0.5 0.2];
% generate one random vector mult(1,p):
>> rng(’default’) 7% For reproducibility
>> r = mnrnd(1,p,1)
>>r =
0 0 1
% generate 3 random vectors from mult(n,p) for n=10:
>> n=10; r = mnrnd(n,p,3)
r =

1 6 3
3 2 5
3 4 3

% compute the PMF of mult(n,p):

>> countl = O:n; count2 = O:n;

>> LP=length(countl);

>> [x1,x2] = meshgrid(countl,count2);

>> x3 = n-(x1+x2);

>> y = mnpdf ([x1(:),x2(:),x3(:)],repmat(p, (LP)"2,1));

% Plot the PMF (see Figure C2.3):

>> y = reshape(y,LP,LP);  bar3(y)

>> set(gca,’XTickLabel’,0:n); set(gca,’YTickLabel’,0:n);
>> xlabel(’x_1’); ylabel(’x_2’); =zlabel(’PMF’)

FIGURE C2.2: Probability mass function of a multinomial random variable with n = 10
and probability vector (0.3,0.5,0.2).

C2.3 Python Functions for Continuous Probability Distributions

Many continuous probability distributions are available in available in MATLAB, as can be
verified in https://uk.mathworks.com/help/stats/continuous-distributions.html.
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C2.3.1 Exponential and Gamma Distributions

We provide next code for generating random numbers from an exponential distribution and
for plotting the pdf of an exponential and a gamma distributed random variable.

% generation of random numbers from Exp(1):
>> y1 = exprnd(1) % a random number
yi =

3.4473

>> y2 = exprnd(1,1,4) % a random row vector of dimension 1x4
y2 =
1.2840 3.0754 2.3317 0.1942

% Plot of the probability density function of an Exp(1):
>>y =0:0.1:10; f = exppdf(y,1);
>> plot(y,f); =xlabel(’y’); ylabel(’f(y)’)

The following code also shows how to find the 0.05 and 0.95 quantiles of an exponential
distribution, such as done with R in Section 2.5.6:

>> lambda = 1;
>> pd = makedist(’exponential’,’mu’,lambda); % mu is the lambda parameter
>> p = [0.05,0.95]; % of an exponential distribution
>> x = icdf(pd,p)
x =
0.0513 2.9957

Figure 2.12 in the book portrays gamma distributions with p = 10 and shape parameters
k=1,2 and 10. Such a plot can be derived in MATLAB as shown below:

>>y = 0:0.1:40;
>> f1 = gampdf(y,1,10); f2 = gampdf(y,2,5); £3 = gampdf(y,10,1);
>> plot(y,f1); hold on

plot(y,f2); plot(y,f3); hold off

xlabel(’y’); ylabel(’£(y)’)

legend(’k = 1 (mean=10)’,’k = 2 (mean=10)’,’k = 10 (mean=10)’)

C2.3.2 Normal Distribution

We use the cdf of a normal distribution to find tail probabilities or central probabilities.
Next, using the cdf of the standard normal, we find the probabilities falling within 1, 2,
and 3 standard deviations of the mean, as in the R code in Section 2.5.2:

>> cumprob = normcdf(-3:3) % cdf-values of a N(0,1) at the components of the vector -3:3
cumprob =
0.0013 0.0228 0.1587 0.5000 0.8413 0.9772 0.9987

>> cumprob(5)-cumprob(3) 7 probability within 2 standard deviation of mean
ans =
0.6827

>> cumprob(6)-cumprob(2) % probability within 2 standard deviation of mean
ans =
0.9545

>> cumprob(7)-cumprob(1) % probability within 3 standard deviation of mean
ans =
0.9973
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Next we use MATLAB for the Section 2.5.3 examples of finding probabilities and quantiles,
such as finding the proportion of the self-employed who work between 50 and 70 hours a
week, when the times have a N(45,15?) distribution. We can apply normal distributions
other than the standard normal by specifying p and o

>> mu = 45; sigma = 15
>> normcdf (70,mu,sigma) - normcdf(50,mu,sigma)

ans = % probability between 50 and 70
0.3217
>> norminv(0.99) % 0.99 quantile of standard normal
ans =
2.3263
>> norminv(0.99,100,16) % 0.99 normal quantile for IQ’s
ans = % when mean = 100, standard deviation = 16
137.2216
>> normcdf (550,500,100) % SAT = 550 is 69th percentile
ans = % when SAT mean = 500, standard deviation = 100

0.6915

>> normcdf (30,18,6)
ans =
0.9772

ACT = 30 is 97.7 percentile
when ACT mean = 18, standard deviation = 6

== 2

The code for plotting the pmf of a Poisson distribution with A = 100 along with the pdf
of a normal with p =100 and o = 10 (see Figure C2.3) is shown next:

>> lambda = 100;

>> y1 = 60:141; % y values between 60 and 140 with increment of 1
>> f1 = poisspdf (y1,lambda);

>> mu = lambda; sigma = sqrt(lambda);

>> y2 = 60:0.1:141; % y values between 60 and 140 with increment of 0.1
>> f£2 = normpdf (y2,mu,sigma);
>> figure

bar(yl,f1,1); hold on

plot(y2,f2,’LineWidth’,2); xlabel(’y’); ylabel(’Probability’)

title(’Poisson pmf and Normal pdf’); legend(’Poisson’,’Normal’,’location’,’northeast’)
hold off

Poisson pmf and Normal pdf

Probability
o
o o
S B

g
2
@

60 70 80 920 100 110 120 130 140

FIGURE C2.3: Probability mass function of a Poisson random variable when p = 100 and
pdf of a N(100,10?) in red.
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C2.3.3 Q-Q Plots and the Normal Quantile Plot

Exercise 2.67 in Chapter 2 and Section A.2.2 in the R Appendix introduced the Q-Q plot
(quantile-quantile plot), which compares graphically the quantiles of an observed sample
data distribution with those of a theoretical distribution. If the theoretical distribution
considered is the standard normal, then the Q-Q plot is called a normal quantile plot.

To illustrate how textitQ-Q plots are constructed in MATLAB, we construct one for the
carbon dioxide emissions values for the 31 European nations in the Carbon.dat data file
and for the Carbon_West.dat data file at the book’s website that adds four Western nations
to the data file for Europe. In MATLAB they are imported as Carbon and CarbonWest. Figure
C2.4 shows these plots. For a discussion and interpretation of these plots we refer to Section
B.2.3 of the book’s Appendix.

% Normal quantile plot for the C02 variable of data file Carbon:
>> C02 = Carbon.C02; % a vector containing values of variable C02 of Carbon
>> qgplot(Carbon.C02)

>> qgplot(CarbonWest.C02) % qgplot for the C02 variable in CarbonWest

QQ Plot of Sample Data versus Standard Normal QQ Plot of Sample Data versus Standard Normal
+

Quantiles of Input Sample
& o o N ® ©o o
X
EN
N

T

Quantiles of Input Sample
Y

-
E&

n

NG
~
n
+

Standard Normal Quantiles Standard Normal Quantiles

FIGURE C2.4: Normal quantile plots for carbon dioxide emissions, for 31 European nations
(left) and also including four other Western nations (right).

|
C2.4 Expectations of Random Variables
C2.4.1 Binomial distribution

For a sufficiently large number of simulations, the sample mean of a random sample from a
binomial distribution is close to its expected value. This was illustrated in Section 2.3.1 by
an example, which is shown here in MATLAB:

% randomly generate a random sample with 10000000 bin(3,0.5):

>> y = binornd(3, 0.5, 1, 10000000) ; % row vector
>> y(1:7) % first 7 of 10 million generated
ans =

3 1 1 3 0 3 2
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>> mean(y) % sample mean of 10000000 binomial outcomes
ans =
1.4998 7 binomial expected value n(pi) = 3(0.5) = 1.5

For the example in Section 2.4.4 of gauging the popularity of a prime minister, using a
sample survey with n = 1500 when 7 = 0.60, we use Python to find the mean and standard
deviation of the relevant binomial distribution and find the probability within 2 and within
3 standard deviations of the mean:

>>n = 1500; p = 0.60;
>> [mu, sigma2] = binostat(n,p);

>> mu

mu = % mean of binomial(1500, 0.60)
900

>> sigma = sqrt(sigma2)

sigma = % standard deviation of binomial(1500, 0.60)
18.9737

>> binocdf (mu + 2*sigma, n, p) - binocdf(mu - 2*sigma, n, p)

ans = % probability within 2 standard deviations of mean
0.9519

>> binocdf (mu + 3*sigma, n, p) - binocdf(mu - 3*sigma, n, p)

ans = % probability within 3 standard deviations of mean
0.9971

Since this binomial distribution is approximately normal, the probabilities above are close
to the normal probabilities of 0.9545 and 0.9973.

C2.4.2 Uniform Distribution

Section 2.3.3 showed that a uniform random variable over the interval [0, U] has = U/2 and
o =U/\/12. Next we find in MATLAB the mean and standard deviation of a simulated sample
of 10 million random outcomes from a uniform [0, 100] distribution, for which p = 50.0 and
o = 28.8675:

>> a =0; b =100; n = 10000000;
% generate a column vector y with n random numbers in the interval (a,b):
>>y = a + (b-a).*rand(n,1);
>> y(1:3) % first 5 simulated values
ans =
50.4711
24.1895
8.0480

>> mean(y) % mean of values in list y

ans =
50.0115

>> std(y)

ans = % standard deviation of values in list y
28.8661

C2.4.3 Finding the Correlation For a Joint Probability Distribution

For a particular joint probability distribution, we can find the correlation using equation
(2.16). We illustrate for the correlation between income and happiness for the joint distri-
bution in Table 2.5.



18

Agresti and Kateri (2022): 2. MATLAB-Web Appendix

>> prob = [0.2, 0.1, 0.0; 0.1, 0.2, 0.1; 0.0, 0.1, 0.2]; % probability table
>> x = [1;2;3]; % column vector of row categories
>y = [12 3]; % row vector of column categories
% expected value of XY, E(XY):

>> EXY = sum((x*y).*prob, ’all’) Y elementwise multiplication of matrices: A.*B
ans = % or: times(A,B)

4.4000
>> rowp =sum(prob,2); % marginal row probabilities (column vector)
>> colp =sum(prob,1) % marginal column probabilities (row vector)
colp =

0.3000 0.4000 0.3000
>> EX = sum(rowp.*x)
EX =

2

>> EY = sum(colp.*y);
>> colp =sum(prob,2); % marginal column probabilities
>> varX = sum(rowp.*x."2) - EX"2 7, elementwise matrix powers: .~
varX =

0.6000

>> varY = sum(colp.*y."2) - EY"2;
>> corrXY = (EXY-EX*EY)/sqrt(varX*varY)
corrXY =

0.6667
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CHAPTER 3: MATLAB FOR SAMPLING
DISTRIBUTIONS

C3.1 Simulation to Illustrate a Sampling Distribution

To explain the concept of a sampling distribution, Section 3.1.1 used simulation to illustrate
results of an exit poll in a U.S. Presidential election, when the probability is 7 = 0.50 of
voting for Joe Biden. Here this is done in MATLAB using a random sample of 2271 voters:

n = 2271; p = 0.5; % values for binomial n, pi

y = binornd(n, p, 1) % 1 binomial experiment

y = % binomial random variable = 1106 Biden votes
1106

>> y/n % simulated proportion of Biden votes = 0.487

The above process is repeated 100000 times next, aiming at investigating the variability
in the results of the simulated proportion voting for Biden, when half of the population
voted for him. Also shown is the code for deriving the histogram of the 100000 simulated
proportions. The histogram is pictured in Figure C3.1 (compare to Figure 3.1).

sim = 100000;
prop = binornd(n, p, sim, 1)/n; 7 vector with the sample proportion values
mean (prop) % mean of 100000 sample proportion values
ans =
0.5000
std(prop) % standard deviation of 100000 sample proportions
ans =
0.0105

hist(prop, 18); 7% histogram of the sampe proprtions with 18 bins
xlabel (’Sample Proportion’); ylabel(’Frequency’)

C3.2 Law of Large Numbers

The simulation discussed in Section 3.2.5, to illustrate the law of large numbers, is performed
here in MATLAB, using the code for uniform random number generation already seen in
Section C2.4.2:

>> a =0; b= 100;

>> nl = 10; n2 = 1000; =n3 = 10000000;

% generate a column vector y with n random numbers in the interval (a,b):
>> y1 = a + (b-a).*rand(nl,1);

>> format long % for output with more than 4 decimal places
>> mean(y1) % sample mean for random sample of

19
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FIGURE C3.1: Histogram of 100000 simulations of the sample proportion favoring Biden,
for simple random samples of 2271 subjects from a population in which exactly half voted
for Biden.

ans = % n=10 from uniform [0,100]
64.283843396916197 % (population mean = 50.0)

>> y2 = a + (b-a).*rand(n2,1); mean(y2)

ans = % sample mean for n=1000

49.045016155333144

>> y3 = a + (b-a).*rand(n3,1); mean(y3)

ans = % sample mean for n=10000000
50.009942307981206
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