
Alan Agresti and Maria Kateri

Python-Web-Appendix of
Foundations of Statistics for
Data Scientists





Contents

0 CHAPTER 0: BASICS OF PYTHON 1
B0.1 Python Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
B0.2 Data Structures and Data Input . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 CHAPTER 1: PYTHON FOR DESCRIPTIVE STATISTICS 5
B1.1 Random Number Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
B1.2 Summary Statistics and Graphs for Quantitative Variables . . . . . . . . . . 5

B1.2.1 Descriptive statistics for carbon dioxide emissions . . . . . . . . . . . . 5
B1.2.2 Side-by-side box plots for U.S. and Canadian murder rates . . . . . . 7

B1.3 Descriptive Statistics for Bivariate Quantitative Data . . . . . . . . . . . . . 8
B1.4 Descriptive Statistics for Bivariate Categorical Data . . . . . . . . . . . . . . 9
B1.5 Simulating Samples from a Bell-Shaped Population . . . . . . . . . . . . . . . 11

2 CHAPTER 2: PYTHON FOR PROBABILITY DISTRIBUTIONS 13
B2.1 Simulating a Probability as a Long-Run Relative Frequency . . . . . . . . . 13
B2.2 Python Functions for Discrete Probability Distributions . . . . . . . . . . . . 14

B2.2.1 Binomial Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
B2.2.2 Poisson Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

B2.3 Python Functions for Continuous Probability Distributions . . . . . . . . . . 15
B2.3.1 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
B2.3.2 Exponential and Gamma Distributions . . . . . . . . . . . . . . . . . . 16
B2.3.3 Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
B2.3.4 Q-Q Plots and the Normal Quantile Plot . . . . . . . . . . . . . . . . . 18

B2.4 Expectations of Random Variables . . . . . . . . . . . . . . . . . . . . . . . . . 19
B2.4.1 Binomial distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
B2.4.2 Uniform Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
B2.4.3 Finding the Correlation For a Joint Probability Distribution . . . . . 21

3 CHAPTER 3: PYTHON FOR SAMPLING DISTRIBUTIONS 23
B3.1 Simulation to Illustrate a Sampling Distribution . . . . . . . . . . . . . . . . . 23
B3.2 Law of Large Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 CHAPTER 4: PYTHON FOR ESTIMATION 25
B4.1 Confidence Intervals for Proportions . . . . . . . . . . . . . . . . . . . . . . . . 25
B4.2 The t Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
B4.3 Confidence Intervals for Means . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
B4.4 Confidence Intervals Comparing Means and Comparing Proportions . . . . . 27
B4.5 Bootstrap Confidence Intervals . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
B4.6 Bayesian Posterior Intervals for Proportions and Means . . . . . . . . . . . . 29

iii



iv Contents

5 CHAPTER 5: PYTHON FOR SIGNIFICANCE TESTING 31
B5.1 Significance Tests for Proportions . . . . . . . . . . . . . . . . . . . . . . . . . 31
B5.2 Chi-Squared Tests Comparing Multiple Proportions in Contingency Tables 31
B5.3 Significance Tests for Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
B5.4 Significance Tests Comparing Means . . . . . . . . . . . . . . . . . . . . . . . . 34

B5.4.1 Anorexia Example: Comparison of Therapy and Control Groups . . 34
B5.5 The Power of a Test in Python . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
B5.6 Nonparametric Statistics: Permutation Test and Wilcoxon Test . . . . . . . 35
B5.7 Kaplan–Meier Estimation of Survival Functions . . . . . . . . . . . . . . . . . 37

6 CHAPTER 6: PYTHON FOR LINEAR MODELS 39
B6.1 Fitting Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
B6.2 The Correlation and R-Squared . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
B6.3 Diagnostics: Residuals and Cook’s Distances for Linear Models . . . . . . . . 41
B6.4 Statistical Inference and Prediction for Linear Models . . . . . . . . . . . . . 46
B6.5 Categorical Explanatory Variables in Linear Models . . . . . . . . . . . . . . 48

B6.5.1 Multiple Comparisons of Means: Bonferroni and Tukey Methods . . . 49
B6.5.2 Models with Categorical and Quantitative Explanatory Variables . . 50
B6.5.3 Interaction with Categorical and Quantitative Explanatory Variables 51

B6.6 Bayesian Fitting of Linear Models . . . . . . . . . . . . . . . . . . . . . . . . . 51

7 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS 55
B7.1 GLMs with Identity Link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B7.1.1 Example: Normal and Gamma GLMs for Covid-19 Data . . . . . . . . 56
B7.2 Logistic Regression: Logit Link with Binary Data . . . . . . . . . . . . . . . . 57
B7.3 Separation and Bayesian Fitting in Logistic Regression . . . . . . . . . . . . 59
B7.4 Poisson Loglinear Model for Counts . . . . . . . . . . . . . . . . . . . . . . . . 60

B7.4.1 Modeling Rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
B7.5 Negative Binomial Modeling of Count Data . . . . . . . . . . . . . . . . . . . 63
B7.6 Regularization: Penalized Logistic Regression Using the Lasso . . . . . . . . 65

8 CHAPTER 8: PYTHON FOR CLASSIFICATION AND CLUSTERING 67
B8.1 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

B8.1.1 Predictive Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
B8.2 Classification Trees and Neural Networks for Prediction . . . . . . . . . . . . 71
B8.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73



0

CHAPTER 0: BASICS OF PYTHON

This Appendix provides implementation in Python of examples that are worked out
in the chapters of this book in R. A familiarity with the open source language
Python is assumed. For beginners, there is a variety of very good introductions to
the Python language available in the internet. For general information on Python, doc-
umentation and tutorials, please visit https://www.python.org/. We use the version
Python 3.7 (https://www.python.org/). A helpful overview is provided in the tutorial
https://docs.python.org/3.7/tutorial/index.html.

To install Python the Python distributions can be used, which collect and install simulta-
neously major libraries required. Among the Python distributions, probably the most handy
is the Individual Edition of Anaconda (https://www.anaconda.com/products/individual);
see also the Anaconda documentation (https://docs.anaconda.com/anaconda/user-guide/).
We further recommend to run Python in an IDE (integrated development environment),
such as Spyder, which is distributed with Anaconda and used in this Appendix.

B0.1 Python Preliminaries

The most popular Python libraries that are also relevant in this book are listed below.

Library Description

glmnet Lasso and Elastic-Net Regularized GLMs

ipython Interactive computing

mathplotlib Tools for data visualization

numpy Numeric Python: operations for multidimensional arrays and linear algebra
functions

os Operating system interfaces: for better programs’ portability between different
platforms

pandas Python Data Analysis Library: creation of data frames and data manipulation

pymc3 Probabilistic Programming in Python: used for Bayesian modelling and MCMC
algorithms

rp2 Python interface to the R language: runs an embedded R, providing access to it
from Python

scikit-learn Machine Learnig in Python (see https://scikit-learn.org/stable)

scipy Scientific Computing: essential scientific algorithms, incl. statistical functions
(scipy.stats)
(see http://scipy-lectures.org/intro/)

seaborn Statistical Data Visualization (based on matplotlib)

statsmodels Classes and functions for statistical modeling and statistical tests

For some statistical functions, model fitting procedures and graphs, there exist more

1

https://www.python.org/
https://www.python.org/
https://docs.python.org/3.7/tutorial/index.html
https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda/user-guide/
https://scikit-learn.org/stable
http://scipy-lectures.org/intro/


2 Agresti and Kateri (2022): 0. Python-Web Appendix

than one options, provided in different libraries. All libraries (and their functions) have very
good documentation and helpful examples. For example, statistical functions in python are
descibed in https://docs.python.org/3/library/statistics.html, while for the statsmodels

library see https://www.statsmodels.org/stable/index.html.
Getting started, we activate the Skyper–console. In Figure B0.1 a screen–shot is provided

illustrating a first trial with some simple values assignments, computing and use of the
function type(). Code can be typed in the spyder editor console on the left, which can be
run (line-wise, selection of lines or a whole script). The output occurs then in the IPython
console on the bottom right. You can give in commands also directly in the IPython console.
The up right console provides the list of the active variables, help, plots and list of files.

FIGURE B0.1: Skyper–console screen–shot.

There is the option in Spyder to select whether graphs appear in a separate window
(%matplotlib qt) or inline (%matplotlib inline). Note that such commands (the so
called magic commands) do work in the IPython console but not within a script (left
window in Spyder)

Also in Python, as in R, comments follow the # symbol. It is important to load at the
beginning of a Python session the required libraries. For example, for dividing the entries of a
vector a=[1,2,3,4] by a scalar (here 2), the numpy library is required, as shown below. The
code is shown in this appendix as it appears in the IPython console, with the input/output
(In []:/Out []:) indication, which of course has to be omitted when typing the code.

IPython 7.12.0 -- An enhanced Interactive Python.

In [1]: a=[1,2,3,4]

...: b=a/2 # see error message below for ’list’/’int’ operation

Traceback (most recent call last):

File "<ipython-input-1-ca95076dec07>", line 2, in <module>

b=a/2

TypeError: unsupported operand type(s) for /: ’list’ and ’int’

In [2]: import numpy # numpy is required for computing with vectors

https://docs.python.org/3/library/statistics.html
https://www.statsmodels.org/stable/index.html


Data Structures and Data Input 3

...: a=numpy.array([1,2,3,4]) # a has to be defined as an array

...: b=a/2

...: print(b)

[0.5 1. 1.5 2. ]

B0.2 Data Structures and Data Input

Analogously to R, python offers a variety of data structures.

● Lists for grouping objects of the same type: There exist several methods for handling
and working with lists, as for example list.append() or list.count(). Lists can be
nested.

● Tuples for grouping objects of different type: Tuples can be also nested.

● Sets: A set is an unordered collection of elements with no duplicate elements, mainly
used for membership testing and eliminating duplicate entries.

● Dictionaries: Dictionaries are ‘associative arrays’, indexed by keys (instead of a range
of numbers).

● Arrays: An array can consist of basic values: characters, integers, floating point numbers.

● Data frames: Convenient for data sets and statistical data analysis.

The first five are data types of python while data frames is of the pandas li-
brary. The NumPy library defines another array type appropriate for multivariate nu-
merical data (numerical and scientific functions apply on such arrays). For a de-
tailed description of the powerful options of the data types and examples, see in
https://docs.python.org/3/tutorial/datastructures.html,
https://docs.python.org/3/library/array.html,
https://numpy.org/doc/stable/reference/generated/numpy.array.html and
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html.

Data files of various formats are easily read in pandas. Commonly data are saved in
CSV files and the data are given in a form such that rows correspond to cases and columns
to variables measured. Such files (or other separated value files, such as R .dat files) can be
easily read, either directly from a url or from a file providing the corresponding path. If the
data separator is ‘,’, then a data file is read by pd.read csv(’...’). In case of different
separator, the separator has to be given. For example, values in data files used in this book
are separated by spaces. Such data files are read by pd.read csv(’...’, sep=’/s+’), see
for example in Section B1.2.1.

The pandas library has also functions for reading files of different formats such as Excel
(read excel()), HDF5 (read hdf()), in table format (read table()) or from the clipboard
(read clipboard()).

https://docs.python.org/3/tutorial/datastructures.html
https://docs.python.org/3/library/array.html
https://numpy.org/doc/stable/reference/generated/numpy.array.html
https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html




1

CHAPTER 1: PYTHON FOR DESCRIPTIVE
STATISTICS

B1.1 Random Number Generation

The example of random number generation in Section 1.3.1 can be implemented in Python

as shown below.

In [1]: import random

...: randomlist = random.sample(range(1,60), 5) # randomly sample 5

...: print(randomlist) # integers from 1 to 60

[37, 31, 34, 3, 17] # without replacement

In [2]: import numpy as np

...: y = list(range(1, 60))

...: randomlist2 = np.random.choice(y, 5) # sample with replacement

...: print(randomlist2)

[ 5 35 1 35 18]

Python can also randomly generate values from various distributions, such as shown in
Sections B1.5, B2.1 and B2.3.

B1.2 Summary Statistics and Graphs for Quantitative Variables

B1.2.1 Descriptive statistics for carbon dioxide emissions

The following code reads the data file on per-capita carbon dioxide emissions for 31 Euro-
pean nations analyzed in Chapter 1 (starting in Section 1.4.1) and finds some descriptive
statistics:

In [1]: import os

...: import pandas as pd # used to read data file

...: Carbon = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/

Carbon.dat’, sep=’\s+’) # values separator is a space

In [2]: Carbon # prints the data file (not shown here)

In [3]: Carbon.shape # dimensions of the array

Out[3]: (31, 2) # (31 rows with 2 columns)

In [4]: Carbon.columns # variables (columns) in the file

Out[4]: Index([’Nation’, ’CO2’], dtype=’object’)

In [5]: Carbon.head() # first 5 observations (starts numbering with 0)

Out[5]:

Nation CO2

0 Albania 2.0

1 Austria 6.9

2 Belgium 8.3

3 Bosnia 6.2

5



6 Agresti and Kateri (2022): 1. Python-Web Appendix

4 Bulgaria 5.9

In [6]: Carbon.tail () # last 5 observations (not shown here)

In [7]: Carbon.describe() # n, mean, std. dev., and five-number

Out[7]: # summary for numerical variables

CO2

count 31.000000 # sample size n

mean 5.819355 # mean of observations in the data file

std 1.964929 # standard deviation

min 2.000000 # minimum value

25% 4.350000 # lower quartile (25th percentile)

50% 5.400000 # median (50th percentile)

75% 6.700000 # upper quartile (75th percentile)

max 9.900000 # maximum value

In [8]: Carbon[’CO2’].mean() # mean

Out[8]: 5.819354838709677

In [9]: Carbon[’CO2’].std() # standard deviation

Out[9]: 1.9649290665464592

In [10]: Carbon[’CO2’].median() # median

Out[10]: 5.4

The histogram of CO2 with 8 bins of equal length can be derived in Python (see Figure
B1.1), as shown below:

# ‘density=False‘ would use counts for the y-axis

In [11]: import matplotlib.pyplot as plt

...: plt.hist(carbonDF[’CO2’], density=True, bins=8)

...: plt.ylabel(’Proportion’)

...: plt.xlabel(’C02’);

...: plt.title(’Histogram of carbonDF[CO2]’)

%Out[2]: Text(0.5, 1.0, ’Histogram of carbonDF[CO2]’)

FIGURE B1.1: Histogram for frequency distribution of European CO2 values.

The box plot of CO2 (see Figure B1.2) is produced as follows:

In [12]: fig1, ax1 = plt.subplots() # creates common layouts of subplots,

...: # including the enclosing figure object, in a single call

...: plt.xlabel(’CO2 values’)

...: ax1.boxplot(carbonDF[’CO2’],vert=False) # creates horizontal box plots



Summary Statistics and Graphs for Quantitative Variables 7

FIGURE B1.2: Box plot of CO2 values for European nations.

B1.2.2 Side-by-side box plots for U.S. and Canadian murder rates

Side-by-side box plots are illustrated in Section 1.4.5 for comparing the murder rates in
U.S. and Canada. Here is Python code for this figure, shown in Figure B1.3, and for using
the groupby command to report summary statistics by nation:

In [1]: import pandas as pd

...: import seaborn as sns

...: Crime = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Murder2.dat’, sep=’\s+’)

...: sns.boxplot(x=’murder’, y=’nation’, data=Crime, orient=’h’)

In [2]: Crime.groupby(’nation’)[’murder’].describe()

Out[2]:

count mean std min 25% 50% 75% max

nation

Canada 10.0 1.673000 1.184437 0.0 1.03 1.735 1.875 4.07

US 51.0 5.252941 3.725391 1.0 2.65 5.000 6.450 24.20

FIGURE B1.3: Side-by-side box plots for U.S. and Canadian murder rates.



8 Agresti and Kateri (2022): 1. Python-Web Appendix

B1.3 Descriptive Statistics for Bivariate Quantitative Data

Fr the example in Section 1.5.1 relating statewide suicide rates in U.S. to the percentage
of people who own guns, we show next code to construct the scatter plot in Figure B1.4
(left) as well as the scatter plot with the fitted regression line (see Figure B1.4, right). The
associated Pearson’s correlation coefficient and the simple linear regression model fit are
also derived:

In [1]: import pandas as pd

...: import seaborn as sns

...: import matplotlib.pyplot as plt # use for scatter plot

...: GS = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Guns_Suicide.dat’,

sep=’\s+’)

In [2]: GS.info() # number of non-missing values per variable

<class ’pandas.core.frame.DataFrame’>

RangeIndex: 51 entries, 0 to 50

Data columns (total 3 columns):

# Column Non-Null Count Dtype

--- ------ -------------- -----

0 state 51 non-null object

1 guns 51 non-null float64

2 suicide 51 non-null float64

# scatterplot:

In [3]: GS.plot(kind=’scatter’, x=’guns’, y=’suicide’, color=’blue’, figsize=(10, 7))

...: plt.xlabel(’guns’, size=14)

...: plt.ylabel(’suicide’, size=14)

Out[3]: Text(0, 0.5, ’suicide’)

In [4]: GS.corr() # correlation matrix for pairs of

Out[4]: # variables in GS data file

guns suicide

guns 1.000000 0.738667 # corr. = 0.739 between guns and suicide

suicide 0.738667 1.000000

In [5]: import numpy as np # scatter plot with linear regression line

...: coef = np.polyfit(GS[’guns’], GS[’suicide’], 1)

...: LR_fn = np.poly1d(coef) # LR_fn: returns fitted y values

...: fig = plt.figure(figsize=(10,7)) # submit next 4 lines together

...: plt.plot(GS[’guns’],GS[’suicide’],’o’,GS[’guns’],LR_fn(GS[’guns’]))

...: plt.xlabel(’guns’, size=14)

...: plt.ylabel(’suicide’, size=14)

Out[5]:

[<matplotlib.lines.Line2D at 0x109535b0>,

<matplotlib.lines.Line2D at 0x10953710>]

In [6]: import statsmodels.formula.api as sm # fit linear regression

...: mod = sm.ols(formula=’suicide ~ guns’, data=GS).fit()

...: print(mod.params) # model parameter estimates

Intercept 7.390080

guns 0.193565 # slope estimate for effect of guns on suicide

dtype: float64

In [7]: print(mod.summary()) # summary of fit

OLS Regression Results

==============================================================================

Dep. Variable: suicide R-squared: 0.546

Model: OLS Adj. R-squared: 0.536

Method: Least Squares F-statistic: 58.84

Date: Fri, 10 Jul 2020 Prob (F-statistic): 6.11e-10

Time: 11:49:09 Log-Likelihood: -121.12



Descriptive Statistics for Bivariate Categorical Data 9

FIGURE B1.4: Scatterplot relating state-level data in the U.S. on percent gun ownership
and suicide rate

No. Observations: 51 AIC: 246.2

Df Residuals: 49 BIC: 250.1

Df Model: 1

Covariance Type: nonrobust

==============================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------

Intercept 7.3901 1.037 7.125 0.000 5.306 9.474

guns 0.1936 0.025 7.671 0.000 0.143 0.244

==============================================================================

Omnibus: 2.959 Durbin-Watson: 2.314

Prob(Omnibus): 0.228 Jarque-Bera (JB): 2.820

Skew: 0.525 Prob(JB): 0.244

Kurtosis: 2.527 Cond. No. 115.

==============================================================================

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is

correctly specified.

B1.4 Descriptive Statistics for Bivariate Categorical Data

We next show code for forming a contingency table and mosaic plot in Python for the
example in Section 1.5.2 of cross-classifying race and political party identification for data
from the 2018 General Subject Survey.

In [1]: import numpy as np

...: import pandas as pd

...: import matplotlib as plt

...: PID = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/

PartyID.dat’, sep=’\s+’)

...: PID_table = pd.crosstab(PID[’race’], PID[’id’], margins=False)

...: PID_table

Out[1]:

id Democrat Independent Republican

race

black 281 65 30

other 124 77 52

white 633 272 704



10 Agresti and Kateri (2022): 1. Python-Web Appendix

In [2]: from scipy.stats.contingency import margins # find marginal

...: mr, mc = margins(PID_table) # dist. counts

...: print(mr) # row marginal counts (output not shown)

...: print(mc) # column marginal counts (output not shown)

# derivation of joint probability table:

In [3]: asarray = np.array(PID_crosstab)/sum(sum(np.array(PID_crosstab)))

...: probtable=pd.DataFrame(asarray, columns=["Democrat",

"Independent","Republican"])

...: probtable.index=["black", "white", "other"]

...: probtable

Out[3]:

Democrat Independent Republican

black 0.125559 0.029044 0.013405

white 0.055407 0.034406 0.023235

other 0.282842 0.121537 0.314567

# derivation of conditional row probabilities (within row) tables:

# (for within column probability table replace in the next line mr by mc )

In [4]: asarray1 = np.array(PID_crosstab)/mr

...: probtable1=pd.DataFrame(asarray1, columns=["Democrat",

"Independent","Republican"])

...: probtable1.index=["black", "white", "other"]

...: probtable1

Out[4]:

Democrat Independent Republican

black 0.747340 0.172872 0.079787

white 0.490119 0.304348 0.205534

other 0.393412 0.169049 0.437539

# alternatively contingency table in statsmodels:

In [5]: import statsmodels.api as sm

...: PIDtable = sm.stats.Table.from_data(PID)

In [6]: from statsmodels.graphics.mosaicplot import mosaic

...: fig, _ = mosaic(PID, index=["race", "id"]) # mosaic plot

The mosaic plot is given in Figure B1.5. The areas of the rectangles corresponding
to each cell are analogous to the respective cell probabilities (given in Out[3] above). If
the conditional row probabilities (see Out[4] above) were equal, then the heights of the
rectangles (races) would be equal across the columns (PatyID), which is here not the case.

FIGURE B1.5: Mosaic plot for the cross–classification of GSS2018 responders by their race
and party ID.



Simulating Samples from a Bell-Shaped Population 11

B1.5 Simulating Samples from a Bell-Shaped Population

The simulation example in Section 1.5.3 took two random samples of size n = 30 each
from a bell-shaped population (specifically, the normal distribution introduced in Section
2.5.1) with a mean of 100 and a standard deviation of 16. The following code performs the
simulation, finds sample means and standard deviations, and constructs histograms:

In [1]: import numpy as np

...: import matplotlib.pyplot as plt

In [2]: mu, sigma = 100, 16

In [3]: y1 = np.random.normal(mu, sigma, 30)

...: y1.mean(), y1.std()

Out[3]: (101.46071134287304, 16.14904095192038)

In [4]: plt.hist(y1, bins=’auto’)

Out[4]:

(array([ 1., 5., 5., 11., 6., 2.]),

array([ 60.51205673, 73.24661343, 85.98117012, 98.71572682,

111.45028351, 124.1848402 , 136.9193969 ]),

<a list of 6 Patch objects>)

In [5]: y2 = np.random.normal(mu, sigma, 30)

...: y2.mean(), y2.std()

Out[5]: (100.29079228919267, 16.792865510807726)

In [6]: plt.hist(y2, bins=’auto’)

Out[6]:

(array([5., 5., 7., 7., 3., 3.]),

array([ 71.54756049, 82.06008145, 92.57260241, 103.08512337,

113.59764433, 124.11016529, 134.62268625]),

<a list of 6 Patch objects>)

The histograms are shown in Figure B1.6 (upper part). Compare to the corresponding
results for samples of size 1000 (see Figure B1.6, lower part).

This example illustrates that descriptive statistics such as the sample mean can them-
selves be regarded as variables, their values varying from sample to sample. Chapter 3
provides results about the nature of that variation.



12 Agresti and Kateri (2022): 1. Python-Web Appendix

FIGURE B1.6: Histograms of two simulated data sets from N(100,162) of size n = 30
(upper) and n = 1000 (lower).



2

CHAPTER 2: PYTHON FOR PROBABILITY
DISTRIBUTIONS

B2.1 Simulating a Probability as a Long-Run Relative Frequency

The examples of random number generation in Section 2.1.1, based on uniform and binomial
distribution, can be implemented in Python as shown below:

In [1]: import numpy as np

In [2]: y = list(range(0, 10)) # list integers from 0 to 9

...: randomlist = np.random.choice(y,7) # sample n=7 observations

...: print(randomlist) # with replacement

[1 4 6 8 3 2 2] # 0 and 1 represent rain, so rain occurs only on day 1

In [3]: np.random.binomial(7, 0.2, size=1) # 1 simulation of 7 flips

Out[3]: array([2]) # obtain 2 heads in 7 flips

In [4]: n, p = 1, 0.2 # no. of flips (trials), prob(success) in each

...: s = np.random.binomial(n, p, 7) # 7 simulations of n flips

...: print(s)

[0 0 0 1 1 0 0] # heads on flips 4 and 5 simulate rain on days 4 and 5

Next we illustrate the definition of the probability of an outcome as the long-run relative
frequency of that outcome in n observations, with n taking values 100, 1000, 10000, 100000,
1000000, and with probability 0.20 for each observation:

# proportion of "heads" in 100, 1000, 10000, 100000, 1000000 flips:

In [1]: import numpy as np

...: x1 =np.random.binomial(100, 0.2, 1); print(x1/100)

...: x2=np.random.binomial(1000, 0.2, 1); print(x2/1000)

...: x3=np.random.binomial(10000, 0.2, 1); print(x3/10000)

...: x4=np.random.binomial(100000, 0.2, 1); print(x4/100000)

...: x5=np.random.binomial(1000000, 0.2, 1); print(x5/1000000)

[0.18] # n=100 or: sum(np.random.binomial(1, 0.2, 100) == 1)/100

[0.206] # n=1000

[0.2023] # n=10000

[0.20037] # n=100000

[0.199933] # n=1000000

The Python code to derive a figure similar to Figure 2.1 in Chapter 2 is provided next:

In [1]: import numpy as np

...: import matplotlib.pyplot as plt

...: n = 1001 # Number of independent experiments in each trial

...: p = 0.2 # Probability of success for each experiment

...: def run_binom(n, p): # Function that runs binomials

...: phat = []

...: for i in range(1,n):

...: phat.append(np.random.binomial(i,p,1)/i)

...: return phat

...: phat = run_binom(n, p) # run the function

...: len(phat) # check the length of the created list

13



14 Agresti and Kateri (2022): 2. Python-Web Appendix

...: fig = plt.figure(figsize=(10, 7))

...: plt.scatter(range(1,n), phat,s=10) # plot scatterplot

...: plt.xlabel("n", size=14)

...: plt.ylabel("proportion", size=14)

B2.2 Python Functions for Discrete Probability Distributions

Many discrete probability distributions have objects available in the scipy.stats mod-
ule of the scipy library, including the binomial (binom), geometric (geom), multinomial
(multinomial), Poisson (poisson), and negative binomial (nbinom). Each has arguments
for the parameter values and for options such as displaying the pmf.

B2.2.1 Binomial Distribution

The binom object has several options for binomial distributions, including calculation of
pmf or cdf values and random number generation. The following shows code for computing
binomial probabilities and plotting a binomial pmf for the example in Section 2.4.2 about
the Hispanic composition of a jury list, which has n = 12 and π = 0.20:

In [1]: import numpy as np

...: from scipy.stats import binom

...: import matplotlib.pyplot as plt

In [2]: binom.pmf(1, 12, 0.20) # binomial P(Y=1) when n=12, pi=0.20

Out[2]: 0.2061584302079996

In [3]: fig, ax = plt.subplots(1, 1)

...: n, pi = 12, 0.2 # following creates plot of bin(12,0.2) pmf

...: y=list(range(0,13)) # y values between 0 and 12

...: ax.vlines(y, 0, binom.pmf(y, n, pi), colors=’b’, lw=5, alpha=0.5)

...: plt.xlabel("y")

...: plt.ylabel("P(y)")

...: plt.xticks(np.arange(min(y), max(y)+1, 1.0))

In [4]: print(list(binom.pmf(y, n, pi))) # displays binomial probabilities

[0.06871947673599997, 0.2061584302079996, 0.28346784153599947,

0.23622320128000002, 0.1328755507199998, 0.05315022028799997,

0.01550214758399999, 0.003321888767999998, 0.0005190451199999995,

5.767168000000002e-05, 4.3253759999999935e-06, 1.9660799999999964e-07,

4.096000000000008e-09]

In [5]: mean, variance, skewness = binom.stats(n, pi, moments=’mvs’)

...: mean, variance, skewness # compare to: print(mean, variance, skewness)

Out[5]: (array(2.4), array(1.92), array(0.4330127))

The following shows code to construct a figure similar to Figure 2.5, for a survey about
legalized marijuana, with n = 3 and π = 0.50.

In [1]: from scipy.stats import binom

...: import matplotlib.pyplot as plt

...: fig, ax = plt.subplots(1, 1)

...: n, p = 3, 0.5

...: x=[0,1,2,3] # or: x=list(range(0,4))

...: ax.vlines(x, 0, binom.pmf(x, n, p), colors=’b’, lw=5, alpha=0.5)

...: plt.xlabel("y")

...: plt.ylabel("P(y)")

...: plt.xticks(np.arange(min(x), max(x)+1, 1.0))

The figure is to be shown in Figure B2.1.



Python Functions for Continuous Probability Distributions 15

FIGURE B2.1: The probability distribution of Y in Table 2.2 of the book.

B2.2.2 Poisson Distribution

For a Poisson distribution, here is how to find probabilities of individual values using the
pmf or of a range of values using the cdf, such as in the example in Section 2.4.7:

In [1]: from scipy.stats import poisson

In [2]: poisson.pmf(0, 2.3) # P(Y=0) if Poisson mean = 2.3

Out[2]: 0.10025884372280375

# Difference of cdf values at 130 and 69 for Poisson with mean = 100:

In [3]: poisson.cdf(130, 100) - poisson.cdf(69, 100)

Out[3]: 0.9976322764993413

# Probability within 2 standard deviations of mean (from 80 to 120):

In [4]: poisson.cdf(120, 100) - poisson.cdf(79, 100)

Out[4]: 0.9598793484053718

B2.3 Python Functions for Continuous Probability Distributions

Many continuous probability distributions are available in the scipy.stats module of the
scipy library, including the beta (beta), chi-squared (chi2), exponential (expon), F (f),
gamma (gamma), logistic (logistic), log-normal (lognorm), normal (norm) and multivariate
normal (multivariate normal), t (t), and uniform (uniform). Each has arguments for the
parameter values and for options such as displaying the pdf.

B2.3.1 Uniform Distribution

The pdf of a uniform random variable (see Figure B2.2) over the interval [0,1] can be plotted
in Python as shown below:

In [1]: import numpy as np

...: from scipy.stats import uniform

...: import matplotlib.pyplot as plt

...: fig, ax = plt.subplots(1, 1)

...: x = np.linspace(uniform.ppf(0.01), uniform.ppf(0.99), 100)

...: rv = uniform()

...: ax.plot(x, rv.pdf(x), lw=2, color=’blue’)

...: plt.plot([-0.3, 0], [0, 0], lw=2, color=’blue’)

...: plt.plot([1,1.3], [0, 0], lw=2, color=’blue’)

...: plt.xticks(np.arange(0, 1.2, 0.2))



16 Agresti and Kateri (2022): 2. Python-Web Appendix

In [2]: uniform.rvs(0,100,1) # a single uniform random number in [0,100]

Out[2]: array([76.36941394])

FIGURE B2.2: Probability density function of a uniform random variable over the interval
[0, 1].

The plot of a cdf of a uniform random variable can be derived as follows:

In [1]: import numpy as np

...: from scipy.stats import uniform

...: import matplotlib.pyplot as plt

...: fig, ax = plt.subplots(1, 1)

...: x = np.linspace(uniform.ppf(0.01), uniform.ppf(0.99), 100)

...: rv = uniform()

...: ax.plot(x, rv.cdf(x), lw=2, color=’blue’)

...: plt.plot([-0.3, 0], [0, 0], lw=2, color=’blue’)

...: plt.plot([1,1.3], [1, 1], lw=2, color=’blue’)

...: plt.xticks(np.arange(0, 1.2, 0.2))

B2.3.2 Exponential and Gamma Distributions

The pdf of an exponential distribution can be plotted using the expon object of the
scipy.stats module. Next we show how to plot an exponential pdf with λ = 1 (shown
in Figure B2.3), analogous to Figure 2.8:

In [1]: import numpy as np

...: import scipy.stats as ss

...: from scipy.stats import expon

...: import matplotlib.pyplot as plt

...: x = np.linspace(0, 10, 5000)

...: th = 1

...: y = ss.expon.pdf(x, 0, th)

...: plt.plot(x,y, lw=2, color="blue") # see Figure B2.3

...: plt.xlabel("y")

...: plt.ylabel("f(y)")

The following code also shows how to find the 0.05 and 0.95 quantiles of an exponential
distribution, such as done with R in Section 2.5.6:

In [2]: expon.ppf(0.05, scale=1), expon.ppf(0.95, scale=1) # scale is lambda parameter

Out[2]: (0.05129329438755, 2.9957322736) # of exponential distribution

The probability integral transformation for generating random numbers from an expo-
nential distribution can easily be implemented in Python. Below is given an example for
λ = 0.5.



Python Functions for Continuous Probability Distributions 17

FIGURE B2.3: Probability density function of an exponential random variable with λ = 1.

FIGURE B2.4: Randomly generated values from an exponential distribution with λ = 0.5.

In [1]: import numpy as np

...: import statistics

...: import matplotlib.pyplot as plt

...: X=np.random.uniform(0, 1, 1000000)

...: Y = -np.log(1 - X)/(0.50) # Y has expon.dist., lambda = 0.50

...: statistics.mean(Y), statistics.stdev(Y)

Out[1]: (1.9986466750756648, 1.9999145800376117) # E(Y) = std.dev(Y) = 2.0

In [2]: plt.hist(Y, bins=50)

...: plt.xlabel(’Y’)

...: plt.ylabel(’Frequency’)

...: plt.xlim(0, 15)

Figure 2.12 in the book portrays gamma distributions with µ = 10 and shape parameters
k = 1,2 and 10. Such a plot can be derived in Python as shown below:

In [1]: import numpy as np

...: from scipy.stats import gamma

...: from matplotlib import pyplot as plt

...: fig, ax = plt.subplots(1, 1)

...: a=np.array([1,2,10]) # our k

...: sc =10/a # scale=1/lambda=mu/k

...: x = np.linspace(0,40, 100)

...: def gamma_pdfs():

...: fig, ax = plt.subplots(1, 1, figsize=(10, 7))

...: for i in range(3):

...: ax.plot(x, gamma.pdf(x, a[i], 0, sc[i]), lw=2)

...: ax.legend([’k=1’, ’k=2’, ’k=10’], loc=’upper right’)

...: gamma_pdfs()



18 Agresti and Kateri (2022): 2. Python-Web Appendix

...: plt.xlabel("y")

...: plt.ylabel("pdf f(y)")

B2.3.3 Normal Distribution

We use the cdf of a normal distribution to find tail probabilities or central probabilities.
Next, using the cdf of the standard normal, we find the probabilities falling within 1, 2,
and 3 standard deviations of the mean, as in the R code in Section 2.5.2:

In [1]: from scipy.stats import norm

In [2]: norm.cdf(1) - norm.cdf(-1) # probability within 1 standard deviation of mean

Out[2]: 0.6826894921370859

In [3]: norm.cdf(2) - norm.cdf(-2) # probability within 2 standard deviation of mean

Out[3]: 0.9544997361036416

In [4]: norm.cdf(3) - norm.cdf(-3) # probability within 3 standard deviation of mean

Out[4]: 0.9973002039367398

Next we use Python for the Section 2.5.3 examples of finding probabilities and quantiles,
such as finding the proportion of the self-employed who work between 50 and 70 hours a
week, when the times have a N(45,152) distribution. We can apply normal distributions
other than the standard normal by specifying µ and σ:

In [1]: from scipy.stats import norm

In [2]: norm.cdf(70,45,15) - norm.cdf(50,45,15) # mean = 45, standard dev. = 15

Out[2]: 0.32165098790894897 # probability between 50 and 70

In [3]: norm.ppf(0.99) # 0.99 quantile of standard normal

Out[3]: 2.3263478740408408

In [4]: norm.ppf(0.99, 100, 16) # 0.99 normal quantile for IQ’s

Out[4]: 137.22156598465347 # when mean = 100, standard deviation = 16

In [5]: norm.cdf(550, 500, 100) # SAT = 550 is 69th percentile

Out[5]: 0.6914624612740131 # when SAT mean = 500, standard deviation = 100

In [6]: norm.cdf(30, 18, 6) # ACT = 30 is 97.7 percentile

Out[6]: 0.9772498680518208 # when ACT mean = 18, standard deviation = 6

The code for plotting the pmf of a Poisson distribution along with the pdf of a normal
with µ = 100 and σ = 10 (see Figure B2.5) is shown next:

In [5]: from scipy.stats import poisson

...: import numpy as np # additional imports to the ’poisson’

...: import matplotlib.pyplot as plt

In [6]: fig, ax = plt.subplots(1, 1)

...: # creation of a plot of a poisson(100) pmf follows:

...: y=list(range(60,141)) # y values between 60 and 140 with increment of 1

...: ax.vlines(y, 0, poisson.pmf(y, 100), colors=’b’, lw=1, alpha=0.5)

...: ax.plot(y, norm.pdf(y,100,10),lw=2, color=’r’,alpha=0.5) # normal pdf

...: plt.xlabel("y")

...: plt.ylabel("P(y)")

...: plt.xticks(np.arange(min(y), max(y)+1, 10))

B2.3.4 Q-Q Plots and the Normal Quantile Plot

Exercise 2.67 in Chapter 2 and Section A.2.2 in the R Appendix introduced the Q-Q plot
(quantile-quantile plot) as a graphical comparison of an observed sample data distribution
with a theoretical distribution. With the standard normal distribution for the theoretical
quantiles, the Q-Q plot is called a normal quantile plot. If the observed data also come from
a normal distribution, the points on the normal quantile plot should follow approximately



Expectations of Random Variables 19

FIGURE B2.5: Probability mass function of a Poisson random variable when µ = 100 and
pdf of a N(100,102) in red.

a straight line, the deviations from a straight line reflecting random sampling variability.
To illustrate how Python can construct this plot, we construct one for the carbon dioxide
emissions values for the 31 European nations in the Carbon data file:

In [1]: import pandas as pd

...: from scipy.stats import probplot

...: from matplotlib import pyplot

In [2]: Carbon = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/

Carbon.dat’, sep=’\s+’)

In [3]: probplot(Carbon[’CO2’], dist = ’norm’, plot = pyplot)

In [4]: Carbon2 = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/

Carbon_West.dat’, sep=’\s+’)

In [5]: probplot(Carbon2[’CO2’], dist = ’norm’, plot = pyplot)

Figure B2.6 shows the plot, on the left. It does not show any clear departure from normal-
ity, as with such a small n, the deviations from the straight line could merely be due to
ordinary sampling variability. Figure B2.6 (right) also shows the normal quantile plot for
the Carbon West data file at the book’s website that adds four Western nations to the data
file for Europe. The values are quite large for three nations (Australia, Canada, U.S.), and
these appear on the upper-right part of the plot as values that are larger than expected for
observations in the right tail of a normal distribution. A couple of points on the lower-left
part of the plot are not as small as expected for observations in the left tail of a normal dis-
tribution. This is a typical normal quantile plot display when the sample-data distribution
is skewed to the right.

B2.4 Expectations of Random Variables

B2.4.1 Binomial distribution

For a sufficiently large number of simulations, the sample mean of a random sample from
a binomial distribution is close to its expected value. Section 2.3.1 illustrated this for the
example shown next with Python:

In [1]: import numpy as np # randomly generate 10000000 bin(3,0.5) rv’s

In [2]: y = np.random.binomial(3, 0.5, 10000000)

In [3]: list(y[0: 10]) # first 10 of 10 million generated

Out[3]: [1, 2, 2, 3, 1, 2, 1, 1, 2, 1]



20 Agresti and Kateri (2022): 2. Python-Web Appendix

FIGURE B2.6: Normal quantile plots for carbon dioxide emissions, for 31 European nations
(left) and also including four other Western nations (right).

In [4]: sum(y)/10000000 # sample mean of 10000000 binomial outcomes

Out[4]: 1.4999395 # binomial expected value n(pi) = 3(0.5) = 1.5

For the example in Section 2.4.4 of gauging the popularity of a prime minister, using a
sample survey with n = 1500 when π = 0.60, we use Python to find the mean and standard
deviation of the relevant binomial distribution and find the probability within 2 and within
3 standard deviations of the mean:

In [1]: from scipy.stats import binom

...: n, p = 1500, 0.60

...: mu = binom.mean(n, p) # mean of binomial(1500, 0.60)

...: sigma = binom.std(n, p) # standard deviation of binomial(1500, 0.60)

...: mu, sigma

Out[1]: (900.0, 18.973665961010276)

In [2]: binom.cdf(mu + 2*sigma, n, p) - binom.cdf(mu - 2*sigma, n, p)

Out[2]: 0.9519324392528513 # probability within 2 standard dev’s of mean

In [3]: binom.cdf(mu + 3*sigma, n,p) - binom.cdf(mu - 3*sigma, n,p)

Out[3]: 0.9971083299488276 # probability within 3 standard dev’s of mean

Since this binomial distribution is approximately normal, the probabilities are close to the
normal probabilities of 0.9545 and 0.9973.

B2.4.2 Uniform Distribution

Section 2.3.3 showed that a uniform random variable over the interval [0, U] has µ = U/2 and
σ = U/

√

12. Here we use Python fo find the mean and standard deviation of a simulated
sample of 10 million random outcomes from a uniform [0, 100] distribution, for which
µ = 50.0 and σ = 28.8675:

In [1]: import numpy as np

...: n=10000000

...: y=np.random.uniform(0, 100, n)

In [2]: list(y[0:5]) # first 5 simulated values

Out[2]:

[27.34765205743761,

20.216650993789067,

10.371009047647906,

78.2854396004128,

62.198820513759124]



Expectations of Random Variables 21

In [3]: ymean=sum(y)/n # mean of values in list y

...: ysd=np.sqrt(sum((y-ymean)**2)/(n-1)) # standard deviation of values in list y

In [2]: ymean, ysd

Out[2]: (49.999411632715706, 28.86646306368665)

# alternatively:

In [3]: import statistics # required for functions for mean and st.dev.

...: statistics.mean(y), statistics.stdev(y)

B2.4.3 Finding the Correlation For a Joint Probability Distribution

For a particular joint probability distribution, we can find the correlation using equation
(2.16). We illustrate for the correlation between income and happiness for the joint distri-
bution in Table 2.5, using the fact that the covariance between a random variable and itself
is the variance:

In [9]: import numpy as np

...: prob =[0.2, 0.1, 0.0, 0.1, 0.2, 0.1, 0.0, 0.1, 0.2]

...: x=[1,1,1,2,2,2,3,3,3]

...: y=[1,2,3,1,2,3,1,2,3]

...: covxy = np.cov(x, y, rowvar=False, aweights=prob)

...: covx = np.cov(x, x, rowvar=False, aweights=prob)

...: covy = np.cov(y, y, rowvar=False, aweights=prob)

...: r = covxy/(np.sqrt(varx*vary)) # 2x2 correlation matrix

...: print(round(r[0,1], 5)) # x-y correlation: element r[0,1]=r[1,0]

0.66667





3

CHAPTER 3: PYTHON FOR SAMPLING
DISTRIBUTIONS

B3.1 Simulation to Illustrate a Sampling Distribution

To explain the concept of a sampling distribution, Section 3.1.1 used simulation to illustrate
results of an exit poll in a U.S. Presidential election, when the probability is π = 0.50 of
voting for Joe Biden. Here we use Python to do this for a random sample of 2271 voters:

In [1]: import numpy as np

...: n, p = 2271, 0.50 # values for binomial n, pi

...: x = np.random.binomial(n, p, 1) # 1 binomial experiment

...: print(x); print(x/n)

[1128] # binomial random variable = 1128 Biden votes

[0.49669749] # simulated proportion of Biden votes = 0.497

The above process is repeated a million times next, aiming at investigating the variability
in the results of the simulated proportion voting for Biden, when half of the population
voted for him. Also shown is the code for deriving the histogram of the million simulated
proportions. The histogram is pictured in Figure B3.1 (compare to Figure 3.1).

In [2]: import matplotlib.pyplot as plt

...: import statistics # use for mean and standard deviation functions

In [3]: results = np.random.binomial(n, p, 1000000)/n

...: statistics.mean(results)

Out[3]: 0.4999967811536768 # mean of million sample proportion values

In [4]: statistics.stdev(results)

Out[4]: 0.010503525956680382 # standard deviation of million sample proportions

In [5]: plt.hist(results, bins=14, edgecolor=’k’) # histogram

...: plt.xlabel(’Sample proportion’); plt.ylabel(’Frequency’)

B3.2 Law of Large Numbers

The simulation discussed in Section 3.2.5, to illustrate the law of large numbers, is performed
here in Python, using the code for uniform random number generation already seen in
Section B2.4.2:

In [1]: import numpy as np

...: n1, n2, n3 = 10, 1000, 10000000

...: y1=np.random.uniform(0, 100, n1); mean1=sum(y1)/n1

...: print(mean1) # sample mean for random sample of

27.12067089376516 # n=10 from uniform [0,100]

In [2]: y2=np.random.uniform(0, 100, n2); mean2=sum(y2)/n2

...: print(mean2) # (population mean = 50.0)

23



24 Agresti and Kateri (2022): 3. Python-Web Appendix

FIGURE B3.1: Histogram of one million simulations of the sample proportion favoring
Biden, for simple random samples of 2271 subjects from a population in which exactly half
voted for Biden.

49.955368338199484 # sample mean for n=1000

In [3]: y3=np.random.uniform(0, 100, n3); mean3=sum(y3)/n3

...: print(mean3)

49.99943168403832 # sample mean for n=10000000



4

CHAPTER 4: PYTHON FOR ESTIMATION

B4.1 Confidence Intervals for Proportions

The (1 − α)100% asymptotic confidence intervals (CIs) for a binomial proportion can be
easily derived in the statsmodels library of python, as shown below for the example of
Section 4.3.4. Of the 1497 respondents in The Netherlands, 778 reported being atheists or
agnostics:

In [1]: from statsmodels.stats.proportion import proportion_confint

...: proportion_confint(count=778, # Number of successes

...: nobs=1497, # Number of trials

...: alpha=0.05, method="normal") # default

Out[1]: (0.4943973906940667, 0.545014766954564) # 95% Wald CI

In [2]: proportion_confint(778, 1497, method="wilson")

Out[2]: (0.4943793119474541, 0.5449319688365669) # 95% Score CI

Notice that the score CI is called Wilson after the name of the statistician who originally
proposed it. Python does not seem to currently have a function for finding a likelihood-ratio
test-based CI for a proportion.

B4.2 The t Distribution

The t distribution is used for the construction of confidence intervals for the mean of normal
populations when the variances are unknown (see Section 4.4.2). In Section 4.4.1 the prop-
erties of t distribution are discussed and t cumulative probabilities as well as t-quantiles,
which are required for the derivation of asymptotic CIs are calculated. The same calcula-
tions are carried out in Python below. Also the code for deriving the plot of pdf’s for t
distributions of various degrees of freedom is provided (analogue to Figure 4.5):

In [1]: import numpy as np

...: from scipy.stats import t

...: from scipy.stats import norm

...: from matplotlib import pyplot as plt

...: fig, ax = plt.subplots(1, 1)

In [2]: df=np.array([1,3,8,30]) # degrees of freedom

...: y = np.linspace(-4,4, 100)

...: def t_pdfs(): # function that creates plot as in Figure 4.5

...: fig, ax = plt.subplots(1, 1, figsize=(10, 7))

...: for i in range(4):

...: ax.plot(y, t.pdf(y, df[i]), lw=2)

...: ax.plot(y, norm.pdf(y), lw=2, linestyle=’dashed’)

...: ax.legend([’df=1’, ’df=3’, ’df=8’, ’df=30’, ’normal’],

loc=’upper right’)

25



26 Agresti and Kateri (2022): 4. Python-Web Appendix

...: t_pdfs() # runs the function

...: plt.xlabel("y")

...: plt.ylabel("Probability density function")

In [3]: df=np.array([1,10,30,100,1000,10000])

...: t.ppf(0.975, df) # 0.975-quantiles for corresponding df

Out[3]:

array([12.70620474, 2.22813885, 2.04227246, 1.98397152, 1.96233908,

1.96020124])

In [4]: t.cdf(1.960201, 10000)

Out[4]: 0.9749999859839616 # cumulative prob. at t=1.960201 when df=10000

B4.3 Confidence Intervals for Means

We next find descriptive statistics and CIs for the Section 4.4.3 example of analyzing weight
changes of anorexic girls who are undergoing a cognitive behavioral therapy:

In [1]: import pandas as pd

...: import numpy as np

...: import matplotlib.pyplot as plt

In [2]: Anor = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Anorexia.dat’, sep=’\s+’)

In [3]: Anor.head(3)

Out[3]:

subject therapy before after

0 1 cb 80.5 82.2

1 2 cb 84.9 85.6

2 3 cb 81.5 81.4

In [4]: change = Anor[’after’] - Anor[’before’]

...: Anor[’change’] = change # add new variable to the data frame

...: Anor.loc[Anor[’therapy’] == ’cb’][’change’].describe()

Out[4]:

count 29.000000

mean 3.006897

std 7.308504

min -9.100000

25% -0.700000

50% 1.400000

75% 3.900000

max 20.900000

Name: change, dtype: float64

In [5]: bins=list(range(-10,30,5)) # histogram with pre-specified bins:

...: plt.hist(Anor.loc[Anor[’therapy’]==’cb’][’change’],

bins, edgecolor=’k’)

...: plt.xlabel(’Weight change’); plt.ylabel(’Frequency’)

In [6]: changeCB = Anor.loc[Anor[’therapy’] == ’cb’][’change’]

In [7]: import statsmodels.stats.api as sms

...: sms.DescrStatsW(changeCB).tconfint_mean() # default alpha=0.05

Out[7]: (0.2268901583588, 5.78690294509) # 95% CI for mean change

In [8]: sms.DescrStatsW(changeCB).tconfint_mean(alpha=0.01)

Out[8]: (-0.743279444048, 6.75707254750) # 99% CI for mean change



Confidence Intervals Comparing Means and Comparing Proportions 27

B4.4 Confidence Intervals Comparing Means and Comparing Pro-
portions

In R the function for t tests for comparing means also provides the corresponding CI for
the difference of means (Section 4.5.3). However, the functions in the statsmodels and
scipy libraries for t tests do not also provide CIs. To construct these CIs, assuming equal
or unequal population variances for the two groups, we provide the following1 function:

In [1]: from scipy.stats import t

In [2]: def t2ind_confint(y1, y2, equal_var=True, alpha = 0.05):

...:

...: # y1, y2 : vectors or data frames of values for group A and B

...: # returns: mean_diff: mean(A)-mean(B) (float)

...: # confint: CI for mu_A - mu_B (1d ndarray)

...: # conf: confidence level of the CI (float)

...: # df (float)

...:

...: n1 = len(y1); n2=len(y2)

...: var1 = np.var(y1)*n1/(n1-1); var2 = np.var(y2)*n2/(n2-1)

...:

...: if equal_var:

...: df=n1+n2-2

...: vardiff=((n1-1)*var1+(n2-1)*var2)/(n1+n2-2)*(1/n1+1/n2)

...: else:

...: df= (var1/n1+var2/n2)**2/(var1**2/(n1**2*(n1-1))+var2**2/(n2**2*(n2-1)))

...: vardiff= var1/n1+var2/n2

...:

...: se = np.sqrt(vardiff)

...: qt = t.ppf(1-alpha / 2,df) # t quantile for 100(1-alpha)% CI

...: mean_diff = np.mean(y1) - np.mean(y2)

...: confint = mean_diff + np.array([-1, 1]) * qt * se

...: conf= 1-alpha

...: return mean_diff, confint, conf, df

# returns: mean(A) - mean(B), CI for mu_A - mu_B, confidence level, df

Next we implement this function for computing a 95% CI for the average difference in
weight change between the therapy and the control groups in the anorexia study:

In [1]: import pandas as pd

In [2]: Anor = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Anorexia.dat’, sep=’\s+’)

In [3]: cogbehav = Anor.loc[Anor[’therapy’]==’cb’][’change’]

...: control = Anor.loc[Anor[’therapy’]==’c’][’change’]

In [5]: mean_diff, confint, conf, df = t2ind_confint(cogbehav,control) # call the function above

...: print(’mean1-mean2 =’, mean_diff) # assume equal variances

...: print(conf, ’CI:’, confint)

...: print(’df =’, df)

mean1-mean2 = 3.456896551724137

0.95 CI: [-0.68013704 7.59393014]

df = 53

In [6]: mean_diff, confint, conf, df = t2ind_confint(cogbehav,control, equal_var=False)

# permit unequal variances

...: print(’mean1-mean2 =’, mean_diff)

...: print(conf, ’CI:’, confint)

...: print(’df =’, df)

mean1-mean2 = 3.456896551724137

0.95 CI: [-0.70446319 7.61825629]

df = 50.97065330426786

1We introduce v1 and v2 because np.var() uses n instead of n − 1 in the denominator.



28 Agresti and Kateri (2022): 4. Python-Web Appendix

Asymptotic CIs for the difference of two proportions are not provided directly in the
standard libraries of python. Next, we provide a function that computes the (1 − α)100%
Wald CI and implement it on the example analyzed in R in Section 4.5.5 about whether
prayer helps coronary surgery patients:

In [1]: import numpy as np

...: from scipy.stats import norm

In [2]: def prop2_confint(y1, n1, y2, n2, alpha = 0.05):

...: # y1, y2 : Number of successes in group A and B (int)

...: # n1, n2 : Number of trials in group A and B (int)

...: # returns: prop_diff for A-B (float), comfint (1d ndarray)

...:

...: prop1 = y1 / n1; prop2 = y2 / n2

...: var = prop1 * (1 - prop1) / n1 + prop2 * (1 - prop2) / n2

...: se = np.sqrt(var)

...: qz = norm.ppf(1-alpha / 2) # standard normal quantile

...:

...: prop_diff = prop1 - prop2

...: confint = prop_diff + np.array([-1, 1]) * qz * se

...: conf= 1-alpha

...: return prop_diff, confint, conf # returns diff, CI, level

...:

# call the function for data on prayers and coronary surgery:

In [3]: prop_diff, confint, conf = prop2_confint(315, 604, 304, 597)

...: print(’prop1-prop2 =’, prop_diff)

...: print(conf, ’CI:’, confint)

prop1-prop2 = 0.012310448489689096

0.95 CI: [-0.04421536 0.06883625]

B4.5 Bootstrap Confidence Intervals

Next, we repeat in Python the analysis of Section 4.6.2. There bootstrap CIs for the me-
dian and standard deviation were constructed. The following code uses the bootstrapped

package to construct a percentile-based CI, for the variable P in the Library data file giving
the number of years since publication of the book. It also provides summary statistics and
two options for constructing a box plot, with and without outliers:

In [1]: import os

...: import pandas as pd

...: import numpy as np

...: import matplotlib.pyplot as plt

In [2]: Books = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Library.dat’, sep=’\s+’)

...: Books.head(3)

Out[2]:

C P

0 1 3

1 9 9

2 4 4

In [3]: Books.describe()

Out[3]:

C P

count 53.000000 53.000000

mean 8.490566 21.981132

std 15.191879 25.793179

min 0.000000 3.000000

25% 1.000000 9.000000

50% 4.000000 17.000000



Bayesian Posterior Intervals for Proportions and Means 29

75% 9.000000 19.000000

max 92.000000 140.000000

In [4]: np.median(Books[’C’])

Out[4]: 4.0

In [5]: np.median(Books[’P’])

Out[5]: 17.0

In [6]: plt.boxplot(Books["P"], vert=False) # Box plot of ’P’

...: plt.xlabel("Years since publication")

# Box plot of ’P’ without outliers:

In [7]: plt.boxplot(Books["P"], vert=False, showfliers=False)

...: plt.xlabel("Years since publication")

# -------- BOOTSTRAP by bootstrapped: ----------------------------

In [8]: pip install bootstrapped # needs to be done once!

In [9]: import bootstrapped.bootstrap as bs

...: import bootstrapped.stats_functions as bs_stats

In [10]: population = Books["P"]

...: samples = population[:10000]

In [11]: print(bs.bootstrap(samples, stat_func=bs_stats.median))

17.0 (15.0, 23.0) # bootstrap CI for median of P

In [12]: print(bs.bootstrap(samples, stat_func=bs_stats.std))

25.548688675899356 (15.742691539935805, 37.91811859395936) # for st.dev.

B4.6 Bayesian Posterior Intervals for Proportions and Means

We next show a Python implementation of the posterior interval for a proportion using
the Jeffreys prior, which is the beta(0.5, 0.5) distribution, for the example in Section 4.7.3
about the proportion believing in hell. The Jeffreys posterior interval is provided as an
option in the proportion confint() function of statsmodels.stats.proportion. HPD
regions can be derived in pymc3, which has to be installed before being imported.

In [1]: from statsmodels.stats.proportion import proportion_confint

...: proportion_confint(814, 1142, method=’jeffreys’)

Out[1]: (0.686028505, 0.738463665) # 95% Jeffreys posterior interval

In [2]: import pymc3

...: from scipy.stats import beta

In [3]: beta_dist = beta.rvs(size = 5000000, a = 814.5, b = 328.5)

...: print(pymc3.stats.hpd(beta_dist, alpha=0.05))

[0.68727542 0.73758295] # 95% HPD interval when use Jeffreys prior

In [4]: import numpy as np

...: print(’[’,np.quantile(beta_dist, 0.025),’,’, np.quantile(beta_dist, 0.975),’]’)

[ 0.6860454783123715 , 0.7384521768118637 ] # ordinary 95% posterior interval

The HPD posterior interval for the mean weight change of anorexic girls is derived in
pymc3 with exactly the same approach as in Section 4.8.2 using R:

# continue analysis from Section B.4.3 with Anor data file

# (required is the variable: changeCB )

In [1]: import numpy as np

In [2]: from pymc3 import *

...: data = dict(y = changeCB)

...: B0=10**(-7) # using priors: inverse gamma,

...: with Model() as model:

...: # define highly disperse priors for variance and mean

...: sigma = InverseGamma(’sigma’, B0, B0, testval=1.)

...: intercept = Normal(’Intercept’, 0, sigma=1/B0)

...: # define likelihood function for normal responses

...: likelihood = Normal(’y’,mu=intercept,sigma=sigma,observed=changeCB)



30 Agresti and Kateri (2022): 4. Python-Web Appendix

...: trace = sample(50000, cores=2) # 100000 posterior samples

In [3]: np.mean(trace[’Intercept’])

Out[4]: 3.007279525692707 # mean of posterior distribution

In [4]: np.std(trace[’Intercept’])

Out[4]: 1.413687215567763 # standard deviation of posterior dist.

In [5]: pymc3.stats.hpd(trace[’Intercept’], alpha=0.05)

Out[5]: array([0.31450337, 5.61027393]) # 95% posterior interval

For comparison, the classical 95% CI of (0.227, 5.787) for the population mean weight
change gives similar substantive conclusions.

Note that in pymc3 the standard choice for a weakly informative prior 2 for σ2 is a half
Cauchy distribution, following the suggestion by Gelman 3. A half Cauchy distribution has
probability density function

f(y;µ,σ) =

⎧
⎪⎪
⎨
⎪⎪
⎩

2
πσ

1
1+(y−µ)2/σ2 y ≥ µ

0 otherwise
,

i.e., it is a truncated Cauchy distribution with support [µ,∞). Repeating the analysis above
with the half Cauchy prior, i.e., replacing
sigma = InverseGamma (’sigma’, B0, B0, testval=1.)

by
sigma = HalfCauchy(’sigma’, beta=25, testval=1.)

we get the following results:

In [5]: np.mean(trace[’Intercept’])

Out[5]: 3.0113614298800147

In [6]: np.std(trace[’Intercept’])

Out[6]: 1.4595045114786154

In [7]: pymc3.stats.hpd(trace[’Intercept’], alpha=0.05)

Out[7]: array([0.2359793 , 5.69659903])

2A prior that includes less information than we actually have for regularization or stabilization purposes.
3Gelman, A. (2006) Prior distributions for variance parameters in hierarchical models, Bayesian Analysis,

1, 515–533



5

CHAPTER 5: PYTHON FOR SIGNIFICANCE
TESTING

B5.1 Significance Tests for Proportions

The asymptotic test for a binomial proportion, based on the asymptotic normal distribution
of the test statistic can be implemented in statsmodels as shown below for the example of
Section 5.2.2 about climate change. Asymptotic confidence intervals, Wald and score, are
also derived:

In [1]: import numpy as np

...: from statsmodels.stats.proportion import proportions_ztest

In [2]: stat, pval = proportions_ztest(524, 1008, 0.5)

...: print(’{0:0.4f},’.format(stat),’{0:0.4f}’.format(pval))

1.2609, 0.2074 # z test statistic and two-sided P-value

In [3]: from statsmodels.stats.proportion import proportion_confint

...: proportion_confint(524, 1008)

Out[3]: (0.48899905080191974, 0.55068348888062) # Wald 95% CI

In [4]: proportion_confint(524, 1008, method=’wilson’)

Out[1]: (0.48898223316199607, 0.5505496516518761) # score 95% CI

The same Python function can test equality of two population proportions. Here is the
code for the example of Section 5.4.2 comparing proportions suffering complications after
heart surgery for prayer and non-prayer groups:

In [1]: import numpy as np

...: from statsmodels.stats.proportion import proportions_ztest

In [2]: count = np.array([315,304]) # group ’success’ counts

...: nobs = np.array([604,597]) # group sample sizes

...: stat, pval = proportions_ztest(count, nobs)

...: print(’{0:0.4f},’.format(stat),’{0:0.4f}’.format(pval))

0.4268, 0.6695 # z test statistic and two-sided P-value

B5.2 Chi-Squared Tests Comparing Multiple Proportions in Con-
tingency Tables

The analysis of two-way contingency tables presented in Section 5.4.4 and illustrated on the
Happiness example of Section 5.4.5 can be implemented in Python as follows:

In [1]: import pandas as pd

...: Happy = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Happy.dat’, sep=’\s+’)

...: rowlabel=[’Married’, ’Divorced/Separated’, ’Never married’]

...: collabel=[’Very happy’, ’Pretty happy’, ’Not too happy’]

31



32 Agresti and Kateri (2022): 5. Python-Web Appendix

...: table = pd.crosstab(Happy[’marital’], Happy[’happiness’], margins = False)

...: table.index=rowlabel

...: table.columns=collabel

...: table

Out[1]:

Very happy Pretty happy Not too happy

Married 432 504 61

Divorced/Separated 92 282 103

Never married 124 409 135

# conditional distributions on happiness (proportions within rows):

In [2]: proptable = pd.crosstab(Happy[’marital’], Happy[’happiness’], normalize=’index’)

...: proptable.index=rowlabel

...: proptable.columns=collabel

...: proptable

Out[2]:

Very happy Pretty happy Not too happy

Married 0.433300 0.505517 0.061184

Divorced/Separated 0.192872 0.591195 0.215933

Never married 0.185629 0.612275 0.202096

In [3]: import statsmodels.api as sm # expected frequencies under H0: independence

...: table = sm.stats.Table(table)

...: print(table.fittedvalues)

Very happy Pretty happy Not too happy

Married 301.613445 556.216153 139.170401

Divorced/Separated 144.302521 266.113445 66.584034

Never married 202.084034 372.670401 93.245565

In [4]: X2 = table.test_nominal_association() # chi-squared test of independence

...: print(X2)

df 4

pvalue 0.0

statistic 197.407019249992

In [5]: table.standardized_resids

Out[5]:

Very happy Pretty happy Not too happy

Married 12.295576 -4.554333 -9.770639

Divorced/Separated -5.913202 1.661245 5.457032

Never married -7.928512 3.411881 5.619486

For the derivation of the mosaic plot, we first transform our data from numeric to string,
since Python has no way to directly assign labels to the categories of the classification
variables within the mosaic command. Coloring the cells according to the values of the
standardized residuals is possible by setting the argument statistic=True (the default
value is False), as done below. The mosaic plot is shown in Figure B5.1.

In [5]: Happy.loc[Happy[’happiness’] == 1, ’happiness’] = ’Very’

...: Happy.loc[Happy[’happiness’] == 2, ’happiness’] = ’Pretty’

...: Happy.loc[Happy[’happiness’] == 3, ’happiness’] = ’Not too’

...: Happy.loc[Happy[’marital’] == 1, ’marital’] = ’Married’

...: Happy.loc[Happy[’marital’] == 2, ’marital’] = ’Div/Sep’

...: Happy.loc[Happy[’marital’] == 3, ’marital’] = ’Never’

...:

...: from statsmodels.graphics.mosaicplot import mosaic

...: fig, _ = mosaic(Happy, [’marital’,’happiness’], statistic=True)



Significance Tests for Means 33

FIGURE B5.1: Mosaic plot for the contingency table cross-classifying the variables ‘Happi-
ness’ and ‘Marital Status’ of the data file Happy.

B5.3 Significance Tests for Means

To illustrate the t test for a mean, Section 5.2.5 tests whether the Hispanics in a GSS
sample have population mean political ideology differing from the moderate value of 4.0,
on an ordinal scale from 1 to 7. Here is this test in Python:

In [1]: import pandas as pd

...: Polid = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Polid.dat’, sep=’\s+’)

In [2]: Polid.head(2)

Out[2]:

race ideology

1 hispanic 1

2 hispanic 1

In [3]: from scipy import stats

...: stats.ttest_1samp(Polid.loc[Polid[’race’]==’hispanic’][’ideology’], 4.0)

# H_0 mean value is 4.0

Out[3]: Ttest_1sampResult(statistic=1.2827341281592484, pvalue=0.20039257254280335)

In [4]: import statsmodels.stats.api as sms

...: sms.DescrStatsW(Polid.loc[Polid[’race’]==’hispanic’][’ideology’]).tconfint_mean()

Out[4]: (3.9523333438892, 4.2265284447287) # 95% CI for population mean

In discussing the impact of sample size on significance tests, namely that large n can
result in statistical significance without practical significance, Section 5.6.2 conducted the
test of H0: µ = 4.0 against Ha: µ ≠ 4.0 for political ideology of the entire sample. Here are
the results and a corresponding CI:

In [5]: from scipy import stats

...: stats.ttest_1samp(Polid[’ideology’], 4.0)

Out[5]: Ttest_1sampResult(statistic=3.8455584366605935, pvalue=0.00012319510560068636)

In [6]: Iimport statsmodels.stats.api as sms

...: sms.DescrStatsW(Polid[’ideology’]). tconfint_mean()

Out[6]: (4.05291076215289, 4.163011567944197) # 95% CI for mu



34 Agresti and Kateri (2022): 5. Python-Web Appendix

B5.4 Significance Tests Comparing Means

In order to test whether the mean weight change in the population differentiates between
the therapy and the treatment group, the asymptotic t test was applied assuming that the
two groups have equal variances or not (see Section 5.3.2. Here, we perform these tests in
scipy:

In [1]: import pandas as pd

...: Anor = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Anorexia.dat’, sep=’\s+’)

In [2]: cogbehav = Anor.loc[Ano[’therapy’]==’cb’][’after’]-Anor.loc[Ano[’therapy’]

==’cb’][’before’]

...: control = Anor.loc[Ano[’therapy’]==’c’][’after’]-Anor.loc[Ano[’therapy’]

==’c’][’before’]

In [3]: from scipy import stats

...: stats.ttest_ind(cogbehav,control, equal_var = True)

Out[3]: Ttest_indResult(statistic=1.6759971255662465, pvalue=0.09962901351492101)

In [4]: stats.ttest_ind(cogbehav,control, equal_var = False)

Out[4]: Ttest_indResult(statistic=1.667749691844813, pvalue=0.1014985956595161)

The CIs for the mean difference are not parts of the output. For these, we constructed
the t2ind confint() function (see Section B4.4).

B5.4.1 Anorexia Example: Comparison of Therapy and Control Groups

To compare two means with independent samples, Section 5.3.5 showed how to use the
modeling approach of Chapter 6, in which an indicator variable represents the two groups
being compared. As in that section, we first show the classical analysis and then the Bayesian
analysis, for the anorexia study comparing the mean weight change between the cognitive
behavioral therapy and control groups:

In [1]: import pandas as pd

...: Anor = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Anorexia.dat’, sep=’\s+’)

In [5]: import numpy as np

...: import statsmodels.formula.api as sm

...:

...: Anor2 = Anor.loc[Anor[’therapy’] != ’f’]

...: change = Anor2[’after’] - Anor2[’before’]; Anor2[’change’]=change

...: mod = sm.ols(formula="change ~ C(therapy)", data=Anor2).fit()

...: print(mod.summary())

====================================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------------

Intercept -0.4500 1.498 -0.300 0.765 -3.454 2.554

C(therapy)[T.cb] 3.4569 2.063 1.676 0.100 -0.680 7.594

==============================================================================

The analysis is equivalent to the one shown in the previous output that assumed equal
variances for the groups. The estimated difference between the means of 3.457 has a standard
error of 2.063 and a P -value of 0.10 for testing H0: µ1 = µ2 against Ha: µ1 ≠ µ2.

Next the Bayesian analysis follows, verifying the results obtained in R (see discussion in
Section 5.3.5). We transform first the string variable therapy to a binary x.

In [10]: from sklearn.preprocessing import LabelEncoder

...: LE = LabelEncoder()

...: Anor2[’x’] = LE.fit_transform(Anor2[’therapy’])



The Power of a Test in Python 35

...: x = np.array(Anor2[’x’]) # x=0 controls (c), x=1 therapy (cb)

In [11]: from pymc3 import *

...: data = dict(x = x, y = change)

...: B0=10**(-8)

...: with Model() as model:

...: # define very disperse prior distributions

...: sigma = InverseGamma (’sigma’, B0, B0, testval=1.)

...: # alternative prior for sigma (see footnote in Section B4.6):

...: # sigma = HalfCauchy(’sigma’, beta=25, testval=1.)

...: intercept = Normal(’Intercept’, 0, sigma = 1/B0)

...: x_coeff = Normal(’x’, 0, sigma = 1/B0)

...: # define likelihood function for normal response variable

...: likelihood = Normal(’y’, mu = intercept + x_coeff * x,

sigma = sigma, observed = change)

...: fit = sample(50000, cores=2) # posterior samples

In [12]: summary(fit)

Out[12]:

mean sd hdi_3% hdi_97% # actually 2.5% and 97.5%

Intercept -0.444 1.543 -3.438 2.366

x 3.452 2.124 -0.517 7.449

sigma 7.749 0.781 6.333 9.220

In [13]: np.mean(fit[’x’] < 0)

Out[13]: 0.05217

The posterior mean estimated difference of 3.45 has a posterior standard deviation of 2.12.
The 95% posterior interval infers that the population mean difference falls between −0.52
and 7.45. This interval includes the value of 0, indicating it is plausible that µ1 = µ2. As an
analog of a one-sided P -value, the Bayesian analysis reports that the posterior probability is
0.052 that the population mean weight change is smaller for the cognitive behavioral group
than for the control group.

B5.5 The Power of a Test in Python

The statsmodels library provide functions for the calculation of powers for basic statistical
tests. For example, for the calculation of the power of a test for a proportion with H0 ∶ π =

1/3 = π0 and H1 ∶ π > 1/3, the power at π1 = 0.5 is given below (compare to Section 5.5.6.).
Note that the normal power() functions requires as input not the difference in probabilities
but the effect size, which for proportions is 2arcsin(

√
π1) − 2arcsin(

√
π0).

In [1]: import numpy as np

...: from statsmodels.stats.power import normal_power

...: normal_power(2*(np.arcsin(np.sqrt(0.5))-np.arcsin(np.sqrt(1/3))), 116, 0.05,

alternative=’larger’, sigma=1.)

Out[1]: 0.9780634871667955

B5.6 Nonparametric Statistics: Permutation Test and Wilcoxon
Test

Limited permutation tests are available of the hypothesis that two populations have identical
distributions. We next show one that uses the difference of means as the test statistic to



36 Agresti and Kateri (2022): 5. Python-Web Appendix

order all the possible samples, for the example of Section 5.8.2 about petting versus praise
of dogs:

In [1]: pip install mlxtend

In [2]: from mlxtend.evaluate import permutation_test

...: data1 = [114, 203, 217, 254, 256, 284, 296] # petting observations

...: data2 = [4, 7, 24, 25, 48, 71, 294] # praise observations

...: p_value = permutation_test(data1, data2)

...: print(p_value)

0.006993006993006993 # P-value for default two-sided alternative

In [3]: p_value = permutation_test(data1, data2, func=’x_mean > y_mean’)

print(p_value) # one-sided test of greater mean for petting

0.0034965034965034965 # classical t one-sided P-value is 0.0017

Simulations can approximate the P -value (e.g., ’method = approximate’, num rounds =

10000) when it is infeasible to generate all permutations. This permutation test does not
have the option of the test statistic being the difference between the sample medians, which
the example in Section 5.8.2 used because of the potentially highly skewed distributions.

More options are provided in the permute package (see http://statlab.github.io/permute/).
The permutation test for the one-sided alternative for the same example follows, using both
available options for test statistic, the difference of the means and the corresponding t
statistic. Again, the difference of medians is not an option to order the samples.

In [1]: pip install permute

...: pip install permute

...: pip install pycrypto

...: pip install cryptorandom

In [2]: import numpy as np

...: from scipy import stats

...: from permute.core import two_sample

In [3]: data1 = [114, 203, 217, 254, 256, 284, 296]

...: data2 = [4, 7, 24, 25, 48, 71, 294]

...: p, t = two_sample(data1, data2, stat=’mean’, alternative=’greater’)

In [4]: print(’Test statistic:’, np.round(t, 5))

...: print(’P-value (two-sided):’, np.round(p, 5))

Test statistic: 164.42857

P-value (two-sided): 0.00354

In [5]: p, t = two_sample(data1, data2, stat=’t’,alternative=’greater’, seed=20)

...: print(’Test statistic:’, np.round(t, 5))

...: print(’P-value (two-sided):’, np.round(p, 5))

Test statistic: 3.63509

P-value (two-sided): 0.00352

The Wilcoxon test of the hypothesis that two populations have identical distributions,
based on comparing the mean ranks of the two samples, is equivalent to the Mann–Whitney
test. That test is performed by the mannwhitneyu function of scipy.stats. However, that
function uses only the large-sample normal approximation for the distribution of the test
statistic rather than an exact permutation analysis. The example of comparing petting
with praise for dogs has very small samples (n1 = n2 = 7), so we show this analysis only for
illustration:

In [4]: from scipy.stats import mannwhitneyu

...: stat, p = mannwhitneyu(data1, data2, use_continuity = False,

alternative = ’greater’)

In [5]: print(stat,p) # approximate, based on large-sample distribution

43.0 0.009043230657843692 # exact one-sided P-value is 0.0087

http://statlab.github.io/permute/


Kaplan–Meier Estimation of Survival Functions 37

B5.7 Kaplan–Meier Estimation of Survival Functions

The analysis of the survival times of the example in Section 5.8.4 can be implemented in
Python using the KaplanMeierFitter function of lifelines. The plot of Kaplan—Meier
estimators of survival functions for the drug and control groups as a function of time (see
Figure 5.10) can be derived as shown below. The produced figure is given in Figure B5.2.

In [1]: import pandas as pd

...: Survival=pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Survival.dat’,sep=’\s+’)

In [2]: import pandas as pd

...: from lifelines import KaplanMeierFitter

...: kmf1 = KaplanMeierFitter() # creates class to create an object

...: kmf2 = KaplanMeierFitter()

...: groups = Survival[’group’]

...: i1 = (groups == 1) # group i1: drug

...: i2 = (groups == 0) # group i2: control

...: T = Survival[’time’]

...: E = Survival[’status’] # Event occured (=1)

...: kmf1.fit(T[i1], E[i1], label=’drug’) # fits model for 1st group

...: a1 = kmf1.plot(ci_show=False)

...: a1.set_ylabel(’Estimated P(survival)’)

...: kmf2.fit(T[i2], E[i2], label=’control’) # fits model for 2nd group

...: a2 = kmf2.plot(ax=a1,ci_show=False)

...: a2.set_xlabel(’Time’)

FIGURE B5.2: Kaplan–Meier estimators of survival functions for drug and control groups,
giving estimated probabilities of survival as a function of time.

The chi-squared test for comparing the survival distributions with censored times is in
Python referred as the log-rank test and conducted as shown next.

In [3]: from lifelines.statistics import logrank_test

...: results = logrank_test(T[i1],T[i2],event_observed_A=E[i1],event_observed_B=E[i2])

...: results.print_summary()

<lifelines.StatisticalResult: logrank_test>

t_0 = -1

null_distribution = chi squared

degrees_of_freedom = 1

test_name = logrank_test

---

test_statistic p -log2(p)

6.25 0.01 6.33





6

CHAPTER 6: PYTHON FOR LINEAR MODELS

B6.1 Fitting Linear Models

We illustrate Python fitting of linear models with the Scottish hill races data set analyzed
in Section 6.1.4. The following code produces a scatterplot matrix for the variables timeW

(record time for women), distance, and climb:

In [1]: import pandas as pd

...: Races = pd.read_csv(’http://stats4ds.rwth-aachen.de/data/ScotsRaces.dat’, sep=’\s+’)

In [2]: Races.head(3)

Out[2]:

race distance climb timeM timeW

0 AnTeallach 10.6 1.062 74.68 89.72

1 ArrocharAlps 25.0 2.400 187.32 222.03

2 BaddinsgillRound 16.4 0.650 87.18 102.48

# create a data frame containing only the variables for the scatterplot matrix:

In [3]: Races2 = Races.drop([’timeM’], axis=1)

In [4]: import seaborn as sns

...: sns.set(style="ticks")

...: sns.pairplot(Races2)

Figure B6.1 shows the scatterplot matrix. Each diagonal entry of the matrix portays a
histogram of the corresponding variable.

FIGURE B6.1: Scatterplot matrix for record time for women, distance, and climb, for
Scottish hill races data.

39



40 Agresti and Kateri (2022): 6. Python-Web Appendix

A linear regression model for predicting the women record time with distance as the sole
explanatory variable is fitted by the function sm.ols() of statsmodels. The associated code
is given below, providing part of the derived output:

In [5]: import statsmodels.formula.api as smf

...: fitd = smf.ols(formula=’timeW ~ distance’, data=Races).fit()

...: print(fitd.summary()) # edited output

coef std err t P>|t| [0.025 0.975]

--------------------------------------------------------------------

Intercept 3.1076 4.537 0.685 0.496 -5.950 12.165

distance 5.8684 0.223 26.330 0.000 5.423 6.313

====================================================================

The following provides just the parameter estimates of the above fitted model:

print(fitd.params)

Intercept 3.107563

distance 5.868443

dtype: float64

Next, the linear regression model for women’s record time with two explanatory variables
(distance and climb) is fitted (compare to the R code in Section 6.2.2):

In [6]: fitdc = smf.ols(formula="timeW ~ distance + climb", data=Races).fit()

...: print(fitdc.summary())

==============================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------

Intercept -14.5997 3.468 -4.210 0.000 -21.526 -7.674

distance 5.0362 0.168 29.919 0.000 4.700 5.372

climb 35.5610 3.700 9.610 0.000 28.171 42.951

==============================================================================

To permit interaction, we place a colon between an interacting pair, as in R. For the
Scottish hill races, the linear regression model with added interaction term between distance
and climb (see Section 6.2.7) is fitted as shown below:

In [7]: fitdc_int = smf.ols(formula=’timeW ~ distance + climb + distance:climb’,

data=Races).fit()

...: print(fitdc_int.summary())

coef std err t P>|t| [0.025 0.975]

----------------------------------------------------------------------

Intercept -5.0162 6.683 -0.751 0.456 -18.367 8.335

distance 4.3682 0.433 10.083 0.000 3.503 5.234

climb 23.9446 7.858 3.047 0.003 8.247 39.643

distance:climb 0.6582 0.394 1.669 0.100 -0.129 1.446

======================================================================

B6.2 The Correlation and R-Squared

The correlation matrix with all pairwise correlations among the variables in the reduced
data frame (without timeM, record time for men) is given next (pandas is required). We
also do this by excluding the outlying case 41 for the extremely long race, repeating the
analysis of Section 6.1.5.



Diagnostics: Residuals and Cook’s Distances for LinearModels 41

In [8]: Races2.corr() # Races2 is data frame without timeM

Out[8]: # correlation matrix for variables in Races2

distance climb timeW

distance 1.000000 0.514471 0.955549

climb 0.514471 1.000000 0.685292

timeW 0.955549 0.685292 1.000000

In [9]: Races3 = Races2.loc[Races2.index != 40] # row 41 has index=40

...: Races3.corr() # (indices start at 0)

Out[9]:

distance climb timeW

distance 1.000000 0.661714 0.920539

climb 0.661714 1.000000 0.851599

timeW 0.920539 0.851599 1.000000

We next find R2, the multiple correlation, and the residual standard error and variance
and marginal variance of the timeW response variable, using the model applied to the data
file without the outlying observation:

# Race3 excludes case 41:

In [10]: fitdc2 = smf.ols(formula = ’timeW ~ distance + climb’, data=Races3).fit()

...: print(fitdc2.summary()) # not shown here

...: print (fitdc2.params) # parameter estimates without case 41

----------------------------------------------------------------------

Intercept -8.931466

distance 4.172074 # 5.036 when include case 41

climb 43.852096 # 35.561 when include case 41

----------------------------------------------------------------------

In [11]: print (’R-Squared:’, fitdc2.rsquared)

...: print (’adjusted R-Squared:’, fitdc2.rsquared_adj)

R-Squared: 0.9519750513925197

adjusted R-Squared: 0.9504742717485359

In [12]: fitted = fitdc2.predict() # model fitted values for timeW

In [13]: np.corrcoef(Races3.timeW, fitted)[0,1] # multiple correlation

Out[13]: 0.9756920884134088

In [14]: residuals = fitdc2.resid

...: n=len(Races3.index); p=2 # p = number of explanatory var’s

...: res_se = np.std(residuals)*np.sqrt(n/(n-(p+1)))

...: print (’residual standard error:’, res_se)

residual standard error: 12.225327029914554

In [15]: res_se**2 # estimated error variance = squared residual standard error

Out[15]: 149.45862098835943

In [16]: np.var(Races3.timeW)*n/(n-1) # estimated marginal variance

Out[16]: 3017.7975421076458 # of women’s record times

B6.3 Diagnostics: Residuals and Cook’s Distances for Linear
Models

We next show how Python can use diagnostics to check model assumptions and detect
influential observations. Section A6.2 in the R webappendix discussed how plots of the
residuals can detect violations of model assumptions. We next show some residual plots
that are available in Python. We first produce a histogram and a normal quantile plot 1 of
the residuals, for the linear model for the complete Scottish hill races data with explanatory
variables distance and climb:

1Sections A2.2 and B2.3.4 introduced Q-Q plots and the normal quantile plot that uses the standard
normal distribution for the theoretical quantiles.



42 Agresti and Kateri (2022): 6. Python-Web Appendix

In [17]: import matplotlib.pyplot as plt

...: import statsmodels.api as sm

In [18]: fitted = fitdc.predict() # fitted values that predict timeW

...: residuals = fitdc.resid # observed timeW - fitted value

...: residuals.head() # first five residual values

Out[18]:

0 13.170403

1 25.378848

2 11.371690

3 6.504777

4 4.410875

In [19]: plt.hist(residuals, density=False) # histogram (Figure B6.2, left)

...: plt.xlabel(’residuals’); plt.ylabel(’frequencies’)

In [20]: import scipy.stats as stats

# qqplot of residuals: (Figure B6.2, right)

In [21]: fig = sm.graphics.qqplot(residuals, dist=stats.norm, line=’45’, fit=True)

These two derived plots, shown in Figure B6.2, check whether the conditional distribu-
tion of the response variable is approximately normal, which is an assumption for making
statistical inference with a linear model. Here, you can check that the histogram of the resid-
uals is approximately bell-shaped and that the normal quantile plot shows a few outliers at
the low and high ends, suggesting that the conditional distribution of timeW is approxi-
mately normal for this model. Check of normality is here presented only for illustration, as
inference is not relevant for the Scottish hill data.

FIGURE B6.2: Histogram and QQ-plot of the residuals for the linear model for the complete
Scottish hill races data with explanatory variables distance and climb.

The other plots we consider are relevant, relating to the adequacy of the linear model
itself. The following code constructs plots of the residuals against the observation index
number and against the fitted values:

In [22]: index = list(range(1, len(residuals) + 1))

In [23]: plt.scatter(index, residuals) # residuals vs. observation index

...: plt.title(’ ’)

...: plt.xlabel(’Index’); plt.ylabel(’Residuals’)

In [24]: plt.scatter(fitted, residuals) # residuals vs. fitted values

...: plt.title(’ ’)

...: plt.xlabel(’Fitted values’); plt.ylabel(’Residuals’)

Figure B6.3 shows these two residual plots. The plot of the residuals against the index does
not show any extreme values. The plot of the residuals against the fitted values shows the
large residual for the observation that has much larger fitted value than the others, which
is the outlying observation 41 that is a very long race.



Diagnostics: Residuals and Cook’s Distances for LinearModels 43

FIGURE B6.3: Plots of residuals against observation index number and against fitted values
for linear model for record times with distance and climb explanatory variables, in Scottish
hill races.

Residuals plotted against each explanatory variable can highlight possible nonlinearity in
an effect or severely nonconstant variance. A partial regression plot displays the relationship
between a response variable and an explanatory variable after removing the effects of the
other explanatory variables that are in the model. It does this by plotting the residuals
from models using these two variables as responses and the other explanatory variable(s)
as predictors. The least squares slope for the points in this plot is necessarily the same as
the estimated partial slope for the multiple regression model. A further diagnostic plot is
that of the partial residuals, also known as Component-Component plus Residual (CCPR)
plot. This plot, for a specific explanatory variable, say X1 =distance, plots the residuals plus
the linear estimated effect of X1 against X1. It shows the relationship between X1 and the
response variable accounting for the remaining explanatory variables in the model. Partial
residual plots should be used with caution, since in case X1 is highly correlated with any
of the other independent variables, then the variance shown in the partial residual plot is
underestimated. The following code plots for each explanatory variable (i) observed and
fitted response values against the explanatory variable, including prediction intervals, (ii)
residuals against the explanatory variable, (iii) partial regression plots, and (iv) the CCPR
plot:

# diagnostic plots for each explanatory variable (see Figure B6.4):

In [25]: sm.graphics.plot_regress_exog(fitdc, ’distance’, fig=plt.figure(figsize=(15, 8)))

In [26]: fig= sm.graphics.plot_regress_exog(fitdc,’climb’,fig=plt.figure(figsize=(15, 8)))

The derived residuals against explanatory variables plots (see upper right plots in Figure
B6.4 (a) and (b)) reveal that the residuals tend to be small in absolute values at low values
of distance and climb, suggesting (not surprisingly) that timeW tends to vary less at those
low values. The partial regression plots, shown for distance and climb in the lower left
plots in Figure B6.4 (a) and (b), suggest that the partial effects of distance and climb are
approximately linear and positive.

Solely he partial regression plots for each explanatory variable can be constructed as
follows:

# partial regression plot for each explanatory variable, adjusting for other:

In [27]: fig_dis = sm.graphics.plot_partregress(’timeW’,’distance’, [’climb’],

data = Races, obs_labels = False)

In [28]:fig_climb = sm.graphics.plot_partregress(’timeW’,’climb’, [’distance’],

data = Races, obs_labels = False)



44 Agresti and Kateri (2022): 6. Python-Web Appendix

(a)

(b)

FIGURE B6.4: Residual diagnostic plots against each explanatory variable for the linear
model for the complete Scottish hill races data with explanatory variables distance and
climb.

We next repeat with Python the analysis performed with R in Section 6.2.8 to use Cook’s
distances to detect potentially influential observations. Cook’s distance is large when an
observation has a large residual and a large leverage. The following code requests a plot of
squared normalized residuals against the leverage:

In [29]: sm.graphics.plot_leverage_resid2(fitdc)

Figure B6.5 shows the plot. We’ve seen in Figure B6.3 that observation 41 (index 40 in
Python) has a large residual, and Figure B6.5 shows it also has a large leverage, highlighting
it as potentially problematic.



Diagnostics: Residuals and Cook’s Distances for LinearModels 45

FIGURE B6.5: Plot of leverage against squared normalized residuals for linear model for
Scottish hill races.

Diagnostics for influential results can be saved in fitdc.get influence, as shown in the
following code. The function OLSInfluence of statsmodels.stats.outliers influence
2, which has to be imported, also provides them. To plot Cook’s distances, we install the
yellowbrick library (in the console window). To create the plot, you need to define two new
data frames, one containing the explanatory variables in the model and the other containing
the response variable. This plot, shown in Figure B6.6(left), and the following code detect
the extremely large Cook’s distance for observation 41 (race: Highland Fling):

In [30]: pip install yellowbrick

In [31]: influence = fitdc.get_influence()

...: leverage = influence.hat_matrix_diag # hat values

...: cooks_d = influence.cooks_distance # Cook’s distances

In [32]: cooks_df = pd.DataFrame(cooks_d,index=[’CooksDist’,’p-value’])

...: cooks_df = pd.DataFrame.transpose(cooks_df)

...: cooks_df.head(3)

Out[32]:

CooksDist p-value

0 0.007997 0.999008

1 0.216293 0.884759

2 0.004241 0.999615

In [33]: max(cooks_df. CooksDist)

Out[33]: 9.068276652414221

In [34]: cooks_df.CooksDist.idxmax(axis = 0)

Out[34]: 40 # case 41 has maximum Cook’s Distance (index starts at 0)

In [35]: from yellowbrick.regressor import CooksDistance

...: X = Races.drop([’race’, ’timeM’, ’timeW’], axis=1)

...: y = Races[’timeW’] # y only has response variable

...: visualizer = CooksDistance() # plot Cook’s distances

...: visualizer.fit(X, y) # Figure B6.6(left)

Next follows the code for plotting the Cook’s distances for the model fitted on the data
set excluding observation 41, shown in Figure B6.6(right):

In [36]: X1 = X.loc[X.index != 40] # 41st case has index=40

2You may find information of the available options in
https://www.statsmodels.org/stable/generated/statsmodels.stats.outliers influence.OLSInfluence.html.

https://www.statsmodels.org/stable/generated/statsmodels.stats.outliers_influence.OLSInfluence.html


46 Agresti and Kateri (2022): 6. Python-Web Appendix

FIGURE B6.6: Plot of the Cook’s distances for the linear model fitted on the Scottish hill
races data with explanatory variables distance and climb. The plot on the left corresponds
to the model fitted on the complete data while that on the right excluding observation 41.

...: y1 = y.loc[y.index != 40]

...: visualizer = CooksDistance() # plot Cook’s distances without

...: visualizer.fit(X1, y1) # influential case (not shown)

Notice that the vertical scales on the two plots in Figure B6.6 are very different, thus the
highs of their bars are not comparable.

B6.4 Statistical Inference and Prediction for Linear Models

To illustrate statistical inference for linear models, Section 6.4.2 used a study of mental
impairment, with life events and SES as explanatory variables. Here are inferential analyses
for those data using Python, showing the global F test and individual t tests and CIs:

In [1]: import pandas as pd

...: Mental = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Mental.dat’, sep=’\s+’)

In [2]: Mental.head(1) # 1st case in the sample

Out[2]:

impair life ses

0 17 46 84

In [3]: Mental.tail(1) # last (40th) case

Out[3]:

39 41 89 75

In [4]: Mental.corr() # correlation matrix

Out[4]:

impair life ses

impair 1.000000 0.372221 -0.398568

life 0.372221 1.000000 0.123337

ses -0.398568 0.123337 1.000000

In [5]: import statsmodels.formula.api as smf

...: fit = smf.ols(formula="impair ~ life + ses", data=Mental).fit()

...: print(fit.summary()) # showing some of the output

======================================================================

DF Residuals: 37 F-statistic: 9.495 # F statistic tests

Df Model: 2 Prob (F-statistic): 0.000470 # H_0: beta1=beta2=0

======================================================================

coef std err t P>|t| [0.025 0.975]

----------------------------------------------------------------------



Statistical Inference and Prediction for Linear Models 47

Intercept 28.2298 2.174 12.984 0.000 23.824 32.635

life 0.1033 0.032 3.177 0.003 0.037 0.169

ses -0.0975 0.029 -3.351 0.002 -0.156 -0.039

We next find a CI for the regression line value E(Y ), a predicted point estimation and
prediction interval (PI) for a new observation Y0, at fixed values of the explanatory variables.
At their mean values (44.42 for life and 56.6 for ses), we find the 95% CI of (25.84, 28.76)
for the mean mental impairment and 95% prediction interval of (17.95, 36.65) for a new
observation Y0. The following code is analogous to the R code in Section 6.4.5:

In [6]: newdata = pd.DataFrame({’life’:[44.42], ’ses’:[56.60]})

In [7]: predictions = fit.get_prediction(newdata)

...: pd.options.display.width = 0 # detection and adjustment of the display size

...: pd.set_option(’display.max_columns’, 7) # number of columns to be displayed in the output

...: predictions.summary_frame(alpha=0.05)

Out[7]:

mean mean_se mean_ci_lower mean_ci_upper obs_ci_lower obs_ci_upper

0 27.299484 0.720436 25.839742 28.759226 17.952574 36.646394

If one asks for the predictions summary above without the pd.options.display.width

command, then not all columns of the output are visible (the inner columns are omitted).
Alternatively, one can control the number of columns to be printed, e.g., set equal to 10,
by the command pd.set option(’display.max columns’, 10).

The same results can be obtained by the function given below, which provides the
prediction, (1 − α)% CI and (1 − α)% PI at a given data point, based on the formu-
las in Section 6.4.2. Notice that this function works for a single data point while the
predictions.summary frame above applies also for data sets with more than one data
point.

In [8]: import numpy as np

...: from scipy.stats import t

...:

...: def regr_intervals(newdata, fit, alpha = 0.05):

...: # input: newdata (a data point)

...: # fit (the results of a model fit)

...: # output: prediction, (1-alpha) CI, PI

...: y_pred = np.array(fit.predict(newdata))

...: residuals = fit.resid

...: n= len(residuals)

...: dof = n-len(fit.params)

...: res_se = np.std(residuals)*np.sqrt(n/dof) # s

...: mean_se = res_se*np.sqrt(1/n)

...: mean_se_pred = res_se*np.sqrt(1+1/n)

...: qt = t.ppf(1-alpha / 2, dof) # t quantile

...: CI = y_pred + np.array([-1, 1]) * qt * mean_se

...: PI = y_pred + np.array([-1, 1]) * qt * mean_se_pred

...: conf= 1-alpha

...: return y_pred, CI, PI, conf

...:

# Application:

In [9]: predict, CI, PI, conf = regr_intervals(newdata,fit) # calls the function

...: print(’prediction =’, predict)

...: print(conf, ’CI:’, CI)

...: print(conf, ’PI:’, PI)

prediction = [27.2994837]

0.95 CI: [25.8397416 28.75922581]

0.95 PI: [17.95257365 36.64639375]

CIs and PIs can be calculated on the values of the sample on which the model estimation
is based by the summary table of the statsmodels.stats.outliers influence function



48 Agresti and Kateri (2022): 6. Python-Web Appendix

as shown below. The data of the output of this function contains the fitted values (column
2), the lower and upper CI limits (columns 4,5) and the lower and upper PI limits (columns
6,7).

In [9]: from statsmodels.stats.outliers_influence import summary_table

...: # summary_table returns:

...: # st: simple table, data: raw data of table, ss2: labels of tables’ columns

...: st, data, ss2 = summary_table(fit, alpha=0.05)

...: fittedvalues = data[:, 2]

...: predict_mean_se = data[:, 3]

...: predict_mean_ci_low, predict_mean_ci_up = data[:, 4:6].T # CI

...: predict_ci_low, predict_ci_up = data[:, 6:8].T # PI

Next we construct a plot (see Figure B6.7) where the scatterplot of the data is shown
(in terms of a specific explanatory variable) along with the CI and PI at each data point.

In [10]: fig, ax = plt.subplots()

...: plt.plot(x, y, ’o’, markersize=5)

...: n=len(fittedvalues)

...: for i in range (1,n+1):

...: plt.plot((x[i-1],x[i-1]), (predict_ci_low[i-1],predict_ci_up[i-1]),

’--’, color=’r’, linewidth=1)

...: plt.plot((x[i-1],x[i-1]), (predict_mean_ci_low[i-1],

predict_mean_ci_up[i-1]), color=’b’, linewidth=1)

...: plt.ylim(predict_ci_low.min()-1,predict_ci_up.max()+1)

...: plt.xlabel("ses")

...: plt.ylabel("impair")

...: plt.show()

FIGURE B6.7: Scatterplot for impair and ses, for the mental impairment data, with the CI
(solid blue) and PI (dashed red) at each data point.

B6.5 Categorical Explanatory Variables in Linear Models

The analysis of variance (ANOVA) model in Section 6.5.2, for comparing the mean in-
comes among three racial-ethnic groups is implemented here in Python. Denote that in
statsmodels a categorical explanatory variable is transformed to a factor by C():



Categorical Explanatory Variables in Linear Models 49

In [1]: import pandas as pd

...: import statsmodels.formula.api as smf

...: Income = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Income.dat’, sep=’\s+’)

In [2]: Income.head(1)

Out[2]:

income education race # race is categorical explanatory variable

0 16 10 B

In [3]: fit = smf.ols(formula = ’income ~ C(race)’, data=Income).fit()

...: print(fit.summary()) # showing some output; F stat. tests

F-statistic: 4.244 Prob (F-statistic): 0.0178 # H_0: equal means

================================================================================

coef std err t P>|t| [0.025 0.975]

--------------------------------------------------------------------------------

Intercept 27.7500 4.968 5.586 0.000 17.857 37.643

C(race)[T.H] 3.2500 7.273 0.447 0.656 -11.232 17.732

C(race)[T.W] 14.7300 5.708 2.581 0.012 3.364 26.096

================================================================================

B6.5.1 Multiple Comparisons of Means: Bonferroni and Tukey Meth-
ods

For the Income example above, the multiple comparisons of the means discussed in Section
6.5.4 are given below:

In [4]: import statsmodels.api as sm

...: aov_table = sm.stats.anova_lm(fit) # ANOVA table

...: aov_table

Out[4]:

df sum_sq mean_sq F PR(>F)

C(race) 2.0 3352.47 1676.235000 4.244403 0.01784

Residual 77.0 30409.48 394.928312 NaN NaN

In [5]: import statsmodels.stats.multicomp as mc

...: comp = mc.MultiComparison(Inc[’inc’], Inc[’race’])

...: post_hoc_res = comp.tukeyhsd()

...: print(post_hoc_res.summary())

Multiple Comparison of Means - Tukey HSD, FWER=0.05

=====================================================

group1 group2 meandiff p-adj lower upper reject

-----------------------------------------------------

B H 3.25 0.8882 -14.1311 20.6311 False

B W 14.73 0.0312 1.0884 28.3716 True

H W 11.48 0.1426 -2.8809 25.8409 False

-----------------------------------------------------

# Plot Tukey intervals (Figure B6.8):

In [6]: post_hoc_res.plot_simultaneous(ylabel= "race", xlabel= "mean income")

In [7]: import statsmodels.stats.api as sms

...: bonf, a1, a2 = comp.allpairtest(sms.ttest_ind, method= "bonf")

...: print(bonf) # Bonferroni

Test Multiple Comparison ttest_ind

FWER=0.05 method=bonf

alphacSidak=0.02, alphacBonf=0.017

=============================================

group1 group2 stat pval pval_corr reject

---------------------------------------------

B H -0.6796 0.5023 1.0 False

B W -2.4398 0.0175 0.0524 False

H W -1.7942 0.0777 0.233 False

=============================================

The reject column of the multiple comparisons table indicates whether one would reject



50 Agresti and Kateri (2022): 6. Python-Web Appendix

the pair of groups having identical means, so based on the Tukey HSD comparisons, we
can conclude only that black and white racial-ethnic groups have differing population mean
annual incomes. The graphical display of the Tukey HSD comparisons is shown in Figure
B6.8.

FIGURE B6.8: Tukey intervals for the means by race for the income data.

B6.5.2 Models with Categorical and Quantitative Explanatory Vari-
ables

We expand the model fitted in Section B6.5 on the income data by adding the quantitative
explanatory variable education (educ), following the analysis of Section 6.5.5.

In [8]: fit2 = smf.ols(formula="inc ~ C(race) + educ", data=Inc).fit()

...: print(fit2.summary()) # part of the output

F-statistic: 21.75 Prob (F-statistic): 2.85e-10

================================================================================

coef std err t P>|t| [0.025 0.975]

--------------------------------------------------------------------------------

Intercept -26.5379 8.512 -3.118 0.003 -43.492 -9.584

C(race)[T.H] 5.9407 5.670 1.048 0.298 -5.352 17.234

C(race)[T.W] 10.8744 4.473 2.431 0.017 1.966 19.783

educ 4.4317 0.619 7.158 0.000 3.199 5.665

==============================================================================

In [9]: sm.stats.anova_lm(fit2)

Out[9]:

df sum_sq mean_sq F PR(>F)

C(race) 2.0 3352.470000 1676.235000 7.01344 1.602408e-03

educ 1.0 12245.231928 12245.231928 51.23458 4.422192e-10

Residual 76.0 18164.248072 239.003264 NaN NaN

In [10]: sm.stats.anova_lm(fit2, typ=2) # Type II sums of squares

Out[10]:

sum_sq df F PR(>F)

C(race) 1460.583947 2.0 3.055573 5.292198e-02 # F test for each variable,

educ 12245.231928 1.0 51.234580 4.422192e-10 # adjusted for other variable

Residual 18164.248072 76.0 NaN NaN

The bottom of the output shows tests for the effect of each variable, adjusted for the other
one. For example, the test that racial-ethnic status has no effect on mean annual income,
adjusting for years of experience, has a test statistic of F = 3.06 and a P -value of 0.053.



Bayesian Fitting of Linear Models 51

B6.5.3 Interaction with Categorical and Quantitative Explanatory
Variables

Continuing the analysis of the income data, the results presented in Section 6.5.7 for the
model with interaction between race and education are derived here in Python.

In [11]: fit3 = smf.ols(formula="inc ~ C(race) + educ + C(race):educ", data=Inc).fit()

...: print(fit3.summary()) # part of the output

F-statistic: 13.80 Prob (F-statistic): 1.62e-09

=====================================================================================

coef std err t P>|t| [0.025 0.975]

-------------------------------------------------------------------------------------

Intercept -6.5355 14.980 -0.436 0.664 -36.385 23.314

C(race)[T.H] -10.0692 26.527 -0.380 0.705 -62.926 42.788

C(race)[T.W] -19.3333 18.293 -1.057 0.294 -55.782 17.116

educ 2.7988 1.182 2.368 0.021 0.444 5.154

C(race)[T.H]:educ 1.2899 2.193 0.588 0.558 -3.079 5.659

C(race)[T.W]:educ 2.4107 1.418 1.700 0.093 -0.414 5.236

=====================================================================================

In [12]: sm.stats.anova_lm(fit3, typ=2)

Out[12]:

sum_sq df F PR(>F)

C(race) 1460.583947 2.0 3.092968 5.127908e-02

educ 12245.231928 1.0 51.861597 4.131357e-10

C(race):educ 691.836568 2.0 1.465050 2.376899e-01

Residual 17472.411504 74.0 NaN NaN

B6.6 Bayesian Fitting of Linear Models

For the mental impairment data, we proceed to a Bayesian analysis, implementing the
approach described in Section 6.6.2. The Bayesian analysis is carried out in the pymc3

package, which needs to be imported first. The code shown next uses two MCMC chains
of length 100,000 each, for which the MCMC approximation to the true fit seems to be
reasonably good:

In [1]: import pandas as pd

...: Mental = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Mental.dat’, sep=’\s+’)

%matplotlib inline # in the IPython console

In [3]: import matplotlib.pyplot as plt

...: from pymc3 import *

...: import pymc3

...: import statsmodels.api as sm

...: from pandas.plotting import scatter_matrix

In [3]: y=Mental.impair

...: life=Mental.life

...: ses=Mental.ses

In [4]: B0=10**(-20); C0=10**(-10)

# model specifications in PyMC3 are wrapped in a with-statement:

...: with Model() as model:

...: # Define priors

...: sigma = InverseGamma (’sigma’, C0, C0, testval=1.)

...: Intercept = Normal(’Intercept’, 0, sigma=1/B0)

...: beta1 = Normal(’beta1’, 0, sigma=1/B0)

...: beta2 = Normal(’beta2’, 0, sigma=1/B0)

...: # Define the likelihood function

...: likelihood = Normal(’y’, mu=Intercept + beta1 * life + beta2 * ses,



52 Agresti and Kateri (2022): 6. Python-Web Appendix

...: sigma=sigma, observed=Mental.impair)

...: # Inference!

...: trace = sample(100000, cores=2) # 2x100000 posterior samples

Sampling 2 chains for 1_000 tune and 100_000 draw iterations (2_000 + 200_000

draws total) took 4418 seconds

In [5]: scatter_matrix(trace_to_dataframe(trace),figsize=(12,12)) # produces Figure B6.3

In [6]: summary(trace)

Out[6]:

mean sd hdi_2.5% hdi_97.5%

Intercept 28.222 2.250 24.025 32.509

beta1 0.103 0.034 0.040 0.167

beta2 -0.097 0.030 -0.154 -0.040

sigma 4.653 0.561 3.659 5.715

In [7]: pm.stats.hpd(trace[’Intercept’], alpha=0.05) # 95% HPD Intervals

Out[7]: array([24.02491087, 32.50900145])

In [8]: pm.stats.hpd(trace[’beta1’], alpha=0.05)

Out[8]: array([0.04017495, 0.16693835])

In [9]: pm.stats.hpd(trace[’beta2’], alpha=0.05)

Out[9]: array([-0.15374007, -0.04024125])

In [10]: pm.stats.hpd(trace[’sigma’], alpha=0.05)

Out[10]: array([3.65905699, 5.71531038])

In [11]: np.median(trace[’Intercept’]) # median

Out[11]: 28.22698834083754

In [12]: np.median(trace[’beta1’])

Out[12]: 0.10334276150835833

In [13]: np.median(trace[’beta2’])

Out[13]: -0.0973951399724454

In [14]: sum(trace[’beta1’]<0)/200000 # analog of one-sided P-value

Out[14]: 0.001405 # for H_a: life events beta > 0

In [15]: sum(trace[’beta2’]>0)/200000 # analog of one-sided P-value

Out[15]: 0.000995 # for H_a: SES beta < 0

Figure B6.2 portrays the posterior distributions of the model parameters.
Results are similar to the Bayesian results obtained with R and similar to the classical results
in Section 6.4.2, which is implemented in Python as follows:

In [2]: import statsmodels.formula.api as smf # standard frequentis analysis

...: fit = smf.ols(formula="impair ~ life + ses", data=Mental).fit()

...: print(fit.summary()) # part of the output

==============================================================================

coef std err t P>|t| [0.025 0.975]

------------------------------------------------------------------------------

Intercept 28.2298 2.174 12.984 0.000 23.824 32.635

life 0.1033 0.032 3.177 0.003 0.037 0.169

ses -0.0975 0.029 -3.351 0.002 -0.156 -0.039

==============================================================================

Final Remark

In this chapter we have fitted linear regression models in statsmodels. For this, we called
either statsmodels.formula.api or statsmodels.api. The former accepts formula and
df (pandas data frames) arguments in a manner similar to R while the latter only takes
endog (endogenous, i.e. response) variables and design matrices (exog: exogenous for inde-
pendent variables). In order to view a list with the names of the available models under
statsmodels.formula.api, type dir(smf).



Bayesian Fitting of Linear Models 53

FIGURE B6.9: Posterior distributions of the parameters for the model fitted on the Mental
impairment data.





7

CHAPTER 7: PYTHON FOR GENERALIZED
LINEAR MODELS

Linear models are special cases of GLMs, so models fitted to the Scottish hill races data in
Section B6.1 by least squares using smf.ols can equivalently be fitted as GLMs:

In [1]: import pandas as pd

...: Races=pd.read_csv(’http://stat4ds.rwth-aachen.de/data/ScotsRaces.dat’,sep=’\s+’)

In [2]: import statsmodels.formula.api as smf

In [3]: fitdc=smf.ols(formula=’timeW ~ distance + climb’, data=Races).fit()

...: print(fitdc.summary()) # edited output of least squares fit

======================================================================

coef std err t P>|t| [0.025 0.975]

--------------------------------------------------------------------

Intercept -14.5997 3.468 -4.210 0.000 -21.526 -7.674

distance 5.0362 0.168 29.919 0.000 4.700 5.372

climb 35.5610 3.700 9.610 0.000 28.171 42.951

----------------------------------------------------------------------

In [4]: fitdc.glm = smf.glm(formula=’timeW ~ distance + climb’, data=Races).fit()

...: print(fitdc.glm.summary()) # edited output of GLM fit

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -14.5997 3.468 -4.210 0.000 -21.397 -7.802

distance 5.0362 0.168 29.919 0.000 4.706 5.366

climb 35.5610 3.700 9.610 0.000 28.309 42.813

======================================================================

The default for smf.glm is the Gaussian (normal) distribution family with identity link
function. The parameter estimates are identical to the least squares fit, but inference about
individual coefficients differs slightly because the glm function uses normal distributions for
the sampling distributions (regardless of the assumed distribution for Y ), whereas the ols
function uses the t distribution, which applies only with normal responses.

B7.1 GLMs with Identity Link

Section 7.1.3 used GLMs with identity link function to model house selling prices. The
scatterplot of the selling prices by size of home and whether it is new, such as shown in
Figure 7.1, can be obtained in Python as follows:

In [1]: import pandas as pd

...: import matplotlib.pyplot as plt

In [2]: Houses = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Houses.dat’, sep=’\s+’)

In [3]: import seaborn as sns

...: Houses[’house’] = Houses[’new’].apply(lambda x: ’old’ if x==0 else ’new’)

...: sns.pairplot(x_vars=[’size’], y_vars=[’price’], data=Houses, hue=’house’, size=5)

55



56 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS

We next fit the GLMs with identity link function discussed in Section 7.1.3, assuming normal
(for which the identity link is the default) or gamma distributions for house selling price:

In [4]: import statsmodels.formula.api as smf

...: import statsmodels.api as sm

# GLM assuming normal response, identity link, permitting interaction

In [5]: fit1 = smf.glm(formula = ’price ~ size + new + size:new’, data = Houses,

family = sm.families.Gaussian()).fit()

...: print(fit1.summary()) # edited output

Generalized Linear Model Regression Results

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -33.3417 23.282 -1.432 0.152 -78.973 12.290

size 0.1567 0.014 11.082 0.000 0.129 0.184

new -117.7913 76.511 -1.540 0.124 -267.751 32.168

size:new 0.0929 0.033 2.855 0.004 0.029 0.157

======================================================================

# GLM assuming gamma response, identity link, permitting interaction:

In [6]: gamma_mod = smf.glm(formula = ’price ~ size + new + size:new’, data = Houses,

family = sm.families.Gamma(link = sm.families.links.identity))

...: fit2 = gamma_mod.fit()

...: print(fit2.summary()) # edited output

Generalized Linear Model Regression Results

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -11.1764 19.461 -0.574 0.566 -49.320 26.967

size 0.1417 0.015 9.396 0.000 0.112 0.171

new -116.8569 96.873 -1.206 0.228 -306.725 73.011

size:new 0.0974 0.055 1.769 0.077 -0.011 0.205

======================================================================

The interaction term is not needed for the gamma GLM, reflecting the greater variability
in the response as the mean increases for that GLM.

B7.1.1 Example: Normal and Gamma GLMs for Covid-19 Data

We next conduct the analyses of the Covid-19 data set in Section 7.1.8 using normal and
gamma GLMs. We fit a (1) normal linear model for the log counts (i.e., assuming a log-
normal distribution for the response),(2) GLM using the log link for a normal response, (3)
GLM using the log link for a gamma response:

In [1]: import pandas as pd

...: import numpy as np

...: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

In [2]: Covid = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Covid19.dat’, sep=’\s+’)

In [3]: fit1 = smf.ols(formula=’np.log(cases) ~ day’, data=Covid).fit()

...: print(fit1.summary()) # normal linear model for log-counts

======================================================================

coef std err t P>|t| [0.025 0.975]

----------------------------------------------------------------------

Intercept 2.8439 0.084 33.850 0.000 2.672 3.016

day 0.3088 0.005 67.377 0.000 0.299 0.318

======================================================================

In [4]: fit2 = smf.glm(formula = ’cases ~ day’, family = sm.families.Gaussian

(link = sm.families.links.log), data = Covid).fit()

...: print(fit2.summary()) # normal GLM with log link

======================================================================

coef std err z P>|z| [0.025 0.975]



Logistic Regression: Logit Link with Binary Data 57

----------------------------------------------------------------------

Intercept 5.3159 0.168 31.703 0.000 4.987 5.645

day 0.2129 0.006 37.090 0.000 0.202 0.224

======================================================================

In [5]: fit2.aic

Out[5]: 594.1435463614453

In [6]: fit3 = smf.glm(formula=’cases ~ day’, family = sm.families.Gamma

(link = sm.families.links.log), data = Covid).fit()

...: print(fit3.summary()) # gamma GLM with log link

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept 2.8572 0.077 36.972 0.000 2.706 3.009

day 0.3094 0.004 73.388 0.000 0.301 0.318

======================================================================

In [7]: fit3.aic

Out[7]: 479.3853756004412 # better fit that normal GLM with log link

All three models assume an exponential relationship for the response over time, but results
are similar with models (1) and (3) because they both permit the variability of the response
to grow with its mean.

B7.2 Logistic Regression: Logit Link with Binary Data

To illustrate logistic regression, Section 7.2.3 models the probability of death for flour beetles
after five hours of exposure to various log-dosages of gaseous carbon disulfide (in mg/liter).
The response variable is binary with y = 1 for death and y = 0 for survival. We can fit
the model with grouped data (Section 7.2.3) or with ungrouped data (i.e. using a data file
having a separate row for each beetle in the sample; see Section 7.2.4). We first present the
ungrouped-data analysis:

In [1]: import pandas as pd

...: import numpy as np

...: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

...: import matplotlib.pyplot as plt

In [2]: Beetles = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Beetles_ungrouped.dat’,

sep=’\s+’)

In [3]: Beetles.head(2)

Out[3]:

x y

0 1.691 1

1 1.691 1

In [4]: Beetles.tail(1)

Out[4]:

480 1.884 1 # 481 observations in ungrouped data file

# logit link is binomial default with smf.glm

In [5]: fit = smf.glm(’y ~ x’, family = sm.families.Binomial(), data=Beetles).fit()

...: print(fit.summary()) # edited output

Generalized Linear Model Regression Results

Deviance: 372.35 Df Residuals: 479

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -60.7401 5.182 -11.722 0.000 -70.896 -50.584

x 34.2859 2.913 11.769 0.000 28.576 39.996

======================================================================



58 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS

The following code shows how to plot the proportion of dead beetles versus the log
dosage of gaseous carbon disulfide, showing also the fit of the logistic regression model:

In [6]: logdose = Beetles.x.unique() # vector of unique values of x

...: yx=pd.crosstab(Beetles[’y’],Beetles[’x’], normalize=’columns’)

...: y_prop=yx.iloc[1] # vector of sample proportions of y=1

...: def f(t):

...: return np.exp(fit.params[0] + fit.params[1]*t)/

(1 + np.exp(fit.params[0] + fit.params[1]*t))

...: t1 = np.arange(1.65, 1.95, 0.0001)

...: fig, ax = plt.subplots()

...: ax.plot(t1, f(t1),’blue’)

...: ax.scatter(logdose, y_prop, s=5, color=’red’)

...: ax.set(xlabel=’x’, ylabel=’P(Y=1)’)

...: plt.show()

The plot itself is shown in Figure B6.1 (compare to Figure 7.5 of the book).

FIGURE B6.1: Proportion of dead beetles versus log dosage of gaseous carbon disulfide,
with fit of logistic regression model.

The code for predicting the probability of death for new values of x (log-dosages), say
1.7 and 1.8, is given below:

In [7]: x_new = pd.DataFrame({’x’: [1.7,1.8]})

...: y_pred = fit.predict(x_new); print(y_pred)

0 0.079143

1 0.726023

Next we fit the logistic regression model to the grouped-data file for the beetles:

In [1]: import pandas as pd

...: from statsmodels.formula.api import glm

...: import statsmodels.api as sm

In [2]: Beetles2=pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Beetles.dat’,sep=’\s+’)

In [3]: Beetles2

Out[3]:

logdose live dead n

0 1.691 53 6 59

1 1.724 47 13 60

2 1.755 44 18 62

3 1.784 28 28 56

4 1.811 11 52 63

5 1.837 6 53 59

6 1.861 1 61 62

7 1.884 0 60 60 # 8 observations in grouped data file



Separation and Bayesian Fitting in Logistic Regression 59

In [4]: fit = glm(’dead + live ~ logdose’, data = Beetles2,

family = sm.families.Binomial()).fit()

In [5]: print(fit.summary()) # same results as with ungrouped data

Generalized Linear Model Regression Results

Deviance: 11.116 Df Residuals: 6

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -60.7401 5.182 -11.722 0.000 -70.896 -50.584

logdose 34.2859 2.913 11.769 0.000 28.576 39.996

======================================================================

The deviance differs, since now the data file has 8 observations instead of 481, but the ML
estimates and standard errors are identical.

Sections B7.3 and B8.1 show other examples of fitting logistic regression models using
Python.

B7.3 Separation and Bayesian Fitting in Logistic Regression

When the explanatory variable values satisfy complete separation, the glm function of
statsmodels reports a separation error and does not provide results. We illustrate for
the toy example of Section 7.2.6:

In [1]: import pandas as pd

...: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

In [2]: dat = pd.DataFrame({’x’ : [1,2,3,4,5,6], ’y’ : [0,0,0,1,1,1]})

...: fit = smf.glm(’y ~ x’, family=sm.families.Binomial(), data=dat).fit()

...: print(fit.summary())

PerfectSeparationError: Perfect separation detected, results not available

With quasi-complete separation, results are reported, but truly infinite estimates have
enormous standard errors. We illustrate with the endometrial cancer example from Section
7.3.2, for which the ML estimate of the NV effect is truly infinite. First of all we verify in
Python that a quasi-complete separation is present. Next, before fitting the logistic regres-
sion model, we standardize first the quantitative explanatory variables (PI and EH), so we
can compare the magnitudes of their estimated effects (which are truly finite). For this, we
using the preprocessing object of the sklearn library:

In [1]: import pandas as pd

In [2]: Endo =pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Endometrial.dat’,sep=’\s+’)

In [3]: pd.crosstab(Endo.NV, Endo.HG)

Out[3]:

HG 0 1

NV

0 49 17 # quasi-complete separation: no ’HG=0 and NV=1’ cases

1 0 13

In [4]: from sklearn import preprocessing # standardize PI and EH:

...: Endo[’PI2’] = preprocessing.scale(Endo.PI)

...: Endo[’EH2’] = preprocessing.scale(Endo.EH)

In [5]: Endo[’NV2’] = Endo[’NV’] - 0.5 # centers NV around 0

In [6]: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

...: fit = smf.glm(’HG ~ NV2 + PI2 + EH2’,

family = sm.families.Binomial(), data = Endo).fit()

...: print(fit.summary()) # true ML estimate for NV is infinite



60 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept 9.8411 6338.889 0.002 0.999 -1.24e+04 1.24e+04

NV2 22.1856 1.27e+04 0.002 0.999 -2.48e+04 2.49e+04

PI2 -0.4191 0.440 -0.952 0.341 -1.282 0.444

EH2 -1.9097 0.556 -3.433 0.001 -3.000 -0.819

======================================================================

Python does not yet seem to have capability of Firth’s penalized likelihood method
(Section 7.7.1) or profile-likelihood CIs for the logistic regression model. However, Bayesian
analysis is possible, which is especially useful when some ML estimates are infinite. For
this, we use the function for GLMs of pymc3, which is simpler to apply and has code similar
to standard GLM code. We illustrate for the endometrial cancer example,1 using highly
disperse normal prior distributions for the model parameters with µ = 0 and σ = 10:

In [7]: import pymc3 as pm

...: from pymc3 import *

...: import numpy as np

In [7]: priors = {’Intercept’: pm.Normal.dist(mu = 0, sd = 10),

...: ’Regressor’: pm.Normal.dist(mu = 0, sd = 10)

...: }

...: with pm.Model() as fit:

...: pm.glm.GLM.from_formula(’HG ~ NV2 + PI2 + EH2’,

Endo, family = pm.glm.families.Binomial(), priors = priors)

...: trace_fit = pm.sample(10000)

In [8]: summary(trace_fit)

Out[8]:

mean sd hdi_2.5% hdi_97.5%

Intercept 3.219 2.529 -0.649 8.149

NV2 9.123 5.036 1.270 18.618 # compare to infinite ML estimate

PI2 -0.475 0.453 -1.349 0.335

EH2 -2.131 0.594 -3.267 -1.054

In [9]: sum(trace_fit[’NV2’] < 0)/20000 # posterior probability of negative NV effect

Out[9]: 0.0002

In [10]: np.median(trace_fit[’Intercept’]) # median of the posterior distribution

Out[10]: 2.740539578438713 # for each model parameter

In [11]: np.median(trace_fit[’NV2’])

Out[11]: 8.156850630693388

In [12]: np.median(trace_fit[’PI2’])

Out[12]: -0.4566611821769522

In [13]: np.median(trace_fit[’EH2’])

Out[13]: -2.0932345181467547

Results are similar to those using R in Section 7.3.2. The posterior distributions of the model
parameters (see Figure B6.2) can be plotted as shown below:

In [14]: import matplotlib.pyplot as plt # Figure B7.2

...: from pandas.plotting import scatter_matrix

...: scatter_matrix(trace_to_dataframe(trace_fit), figsize=(12,12))

B7.4 Poisson Loglinear Model for Counts

To illustrate the modeling of count data, Section 7.4.2 used Poisson loglinear models for data
on female horseshoe crabs, in which the response variable is the number of male satellites

1Warning: This is very slow compared with R.



Poisson Loglinear Model for Counts 61

FIGURE B6.2: Posterior distributions of the parameters for the model fitted on the en-
dometrial cancer study data.

during a mating season. Here is Python code for the model with explanatory variables
weight and color, treating color as a factor:

In [1]: import pandas as pd

...: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

In [2]: Crabs = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Crabs.dat’, sep=’\s+’)

In [3]: fit = smf.glm(’sat ~ weight + C(color)’, # default log link

family=sm.families.Poisson(), data=Crabs).fit()

...: print(fit.summary()) # edited output

Generalized Linear Model Regression Results

Deviance: 551.80 Df Residuals: 168

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -0.0498 0.233 -0.214 0.831 -0.507 0.407

C(color)[T.2] -0.2051 0.154 -1.334 0.182 -0.506 0.096

C(color)[T.3] -0.4498 0.176 -2.560 0.010 -0.794 -0.105

C(color)[T.4] -0.4520 0.208 -2.169 0.030 -0.861 -0.044

weight 0.5462 0.068 8.019 0.000 0.413 0.680

======================================================================

In [4]: fit.aic # AIC indicates the fit is poorer than

Out[4]: 917.1026114781453 # negative binomial model in Section B.7.5

The output includes the residual deviance and its df. We can obtain the null deviance
and its df by fitting the null model, i.e. the model containing only the intercept (in R the
null deviance is part of the standard output):

In [5]: fit0 = smf.glm(’sat ~ 1’, family = sm.families.Poisson(), data=Crabs).fit()

In [6]: fit0.deviance, fit0.df_resid

Out[6]: (632.791659200811, 172)

Python produces an analysis of variance (ANOVA) table only for linear models. For a
GLM, we can construct an analogous analysis of deviance table, as shown next for summa-
rizing likelihood-ratio tests for the explanatory variables in the loglinear model for horseshoe
crab satellite counts:



62 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS

In [7]: fitW = smf.glm(’sat ~ weight’, family = sm.families.Poisson(),

data=Crabs).fit() # weight the sole predictor

...: fitC = smf.glm(’sat ~ C(color)’, family=sm.families.Poisson(),

data=Crabs).fit() # color the sole predictor

...: D = fit.deviance; D1 = fitW.deviance; D2 = fitC.deviance

In [8]: df = fit.df_resid # residual degrees of freedom of the models

...: dfW = fitW.df_resid

...: dfC = fitC.df_resid

In [9]: from scipy import stats # P-values for likelihood-ratio tests

...: P_weight = 1 - stats.chi2.cdf(D2 - D, dfC - df)

...: P_color = 1 - stats.chi2.cdf(D1 - D, dfW - df)

In [10]: pd.DataFrame({’Variable’: [’weight’,’C(color)’],

’LR Chisq’: [round(D2 - D, 3), round(D1 - D, 3)],

’df’: [dfC - df, dfW - df],

’Pr(>Chisq)’: [P_weight, P_color]})

Variable LR Chisq df Pr(>Chisq)

0 weight 57.334 1 3.6748e-14

1 C(color) 9.061 3 2.8485e-02 # color effect P-value = 0.028

Recall that the analysis of deviance table of a GLM in R can be obtained by the Anova

function (see Section 7.4.2).

B7.4.1 Modeling Rates

To model a rate with a Poisson loglinear model, we use an offset. Here is code for an
expanded version of the analysis in Section 7.4.3 of lung cancer survival, including histology
as an additional prognostic factor:

In [1]: import pandas as pd

...: import numpy as np

...: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

In [2]: Cancer = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Cancer2.dat’, sep=’\s+’)

In [3]: Cancer.head(2)

Out[3]:

time histology stage count risktime

0 1 1 1 9 157

1 1 2 1 5 77

In [4]: logrisktime = np.log(Cancer.risktime)

...: fit = smf.glm(’count ~ C(histology) + C(stage) + C(time)’,

family = sm.families.Poisson(), offset = logrisktime, data = Cancer).fit()

...: print(fit.summary()) # edited output

=====================================================================================

coef std err z P>|z| [0.025 0.975]

-------------------------------------------------------------------------------------

Intercept -3.0093 0.167 -18.073 0.000 -3.336 -2.683

C(histology)[T.2] 0.1624 0.122 1.332 0.183 -0.077 0.401

C(histology)[T.3] 0.1075 0.147 0.729 0.466 -0.181 0.397

C(stage)[T.2] 0.4700 0.174 2.694 0.007 0.128 0.812

C(stage)[T.3] 1.3243 0.152 8.709 0.000 1.026 1.622

C(time)[T.2] -0.1275 0.149 -0.855 0.393 -0.420 0.165

C(time)[T.3] -0.0797 0.164 -0.488 0.626 -0.400 0.241

C(time)[T.4] 0.1189 0.171 0.695 0.487 -0.216 0.454

C(time)[T.5] -0.6651 0.261 -2.552 0.011 -1.176 -0.154

C(time)[T.6] -0.3502 0.243 -1.438 0.150 -0.827 0.127

C(time)[T.7] -0.1752 0.250 -0.701 0.483 -0.665 0.315

=====================================================================================

After fitting the model, we can construct an analysis of deviance analog of an ANOVA table
showing results of likelihood-ratio tests for the effects of individual explanatory variables,
and construct CIs for effects (here, comparing stages 2 and 3 to stage 1):



Negative Binomial Modeling of Count Data 63

In [5]: fit1 = smf.glm(’count ~ C(stage) + C(time)’,

family = sm.families.Poisson(), offset = logrisktime,

data = Cancer).fit()

...: fit2 = smf.glm(’count ~ C(histology) + C(time)’,

family = sm.families.Poisson(), offset = logrisktime,

data = Cancer).fit()

...: fit3 = smf.glm(’count ~ C(histology) + C(stage)’,

family = sm.families.Poisson(), offset = logrisktime,

data = Cancer).fit()

In [6]: D = fit.deviance; D1 = fit1.deviance

...: D2 = fit2.deviance; D3 = fit3.deviance

...: df = fit.df_resid; df1 = fit1.df_resid # residual df values

...: df2 = fit2.df_resid; df3 = fit3.df_resid

...: from scipy import stats

...: P_hist = 1 - stats.chi2.cdf(D1 - D, df1 - df) # like.-ratio

...: P_stage = 1 - stats.chi2.cdf(D2 - D, df2 - df) # test P-values

...: P_time = 1 - stats.chi2.cdf(D3 - D, df3 - df)

In [7]: pd.DataFrame({’Variable’:[’C(histology)’, ’C(stage)’, ’C(time)’],

’LR Chisq’:[round(D1-D,3), round(D2-D,3), round(D3-D,3)],

’df’: [df1 - df, df2 - df, df3 - df],

’Pr(>Chisq)’: [P_hist, P_stage, P_time]})

Variable LR Chisq df Pr(>Chisq)

0 C(histology) 1.876 2 0.391317

1 C(stage) 99.155 2 0.000000

2 C(time) 11.383 6 0.077237

In [8]: CI = np.exp(fit.conf_int(alpha = 0.05))

...: CI.iloc[[3]] # 95% CI for multiplicative effect of

Out[8]: # stage 2, compared to stage 1

0 1

C(stage)[T.2] 1.136683 2.252211

In [9]: CI.iloc[[4]] # 95% CI for multiplicative effect of

Out[9]: # stage 3, compared to stage 1

0 1

C(stage)[T.3] 2.790695 5.06488

B7.5 Negative Binomial Modeling of Count Data

Negative binomial modeling of count data has more flexibility than Poisson modeling, be-
cause the response variance can exceed the mean, permitting overdispersion. As in Section
7.5.3, we first show that the marginal distribution of the number of satellites for the fe-
male horseshoe crabs exhibits more variability than the Poisson permits and then plot a
histogram of the satellite counts (not shown here):

In [1]: import pandas as pd

...: import numpy as np

...: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

...: import matplotlib.pyplot as plt

In [2]: Crabs = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Crabs.dat’, sep=’\s+’)

In [3]: round(np.mean(Crabs.sat), 4) # mean number of satellites

Out[3]: 2.9191

In [4]: round(np.var(Crabs.sat), 4) # variance of number of satellites

Out[4]: 9.8547 # overdispersion: for Poisson, true variance = mean

In [5]: plt.hist(Crabs[’sat’], density=True, bins=16, edgecolor=’k’)

...: plt.ylabel(’Proportion’); plt.xlabel(’Satellites’);

...: plt.show()



64 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS

Negative binomial GLMs can be fitted in statsmodels. However, the dispersion param-
eter (1/k in formula (7.7), called alpha in the Python output) is not estimated (as in the
glm.nb() function of the MASS package in R) and needs to be specified. Thus, in practice
a negative binomial GLM has to be fitted in two steps. First, we need to estimate the
dispersion parameter and then fit the model, as illustrated below for our example. The
estimation of the dispersion parameter can be done by a negative binomial model fitting
in statsmodels.discrete.discrete model. In order to estimate α correctly, we need to
specify the design matrix of the GLM we want to fit. This stage yields correct estimates
for the model parameters but not for their standard errors. In a second step, we re-fit the
negative binomial GLM, setting the dispersion parameter equal to its estimate, derived in
the first step.

# Step 1:

In [6]: from statsmodels.discrete.discrete_model import NegativeBinomial

In [7]: formula = ’sat ~ weight+C(color)’

...: model=NegativeBinomial.from_formula(formula, data=Crabs, loglike_method=’nb2’)

In [8]: fit_dispersion=model.fit()

...: print(fit_dispersiona.summary())

Out[8]: # correct estimates but wrong std. errors; alpha = dispersion est.

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -0.4263 0.559 -0.762 0.446 -1.522 0.670

C(color)[T.2] -0.2528 0.351 -0.721 0.471 -0.940 0.435

C(color)[T.3] -0.5219 0.379 -1.376 0.169 -1.265 0.222

C(color)[T.4] -0.4804 0.428 -1.124 0.261 -1.319 0.358

weight 0.7121 0.178 4.005 0.000 0.364 1.061

alpha 1.0420 0.190 5.489 0.000 0.670 1.414

# Step 2:

In [9]: a = fit_dispersion.params[5] # a set equal to alpha

...: fit = smf.glm(’sat ~ weight + C(color)’, family =

sm.families.NegativeBinomial(alpha = a), data = Crabs).fit()

In [10]: print(fit.summary()) # edited output

Generalized Linear Model Regression Results

Deviance: 196.56 Df Residuals: 168

======================================================================

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -0.4263 0.538 -0.792 0.428 -1.481 0.629

C(color)[T.2] -0.2527 0.349 -0.725 0.468 -0.936 0.430

C(color)[T.3] -0.5218 0.380 -1.373 0.170 -1.266 0.223

C(color)[T.4] -0.4804 0.428 -1.122 0.262 -1.320 0.359

weight 0.7121 0.161 4.410 0.000 0.396 1.029

======================================================================

In [9]: print(’AIC:’, round(fit.aic, 3))

AIC: 755.935 # better fit than Poisson loglinear model in Section B.7.4

An analysis of deviance table can be constructed for this model, analogous to the tables
constructed for the Poisson loglinear model in Section B7.4.1.



Regularization: Penalized Logistic Regression Using the Lasso 65

B7.6 Regularization: Penalized Logistic Regression Using the
Lasso

The lasso regularization method is available with glmnet, which first has to be installed.2

We illustrate it for the logistic regression model fitted on the student survey data, with re-
sponse variable the opinion about whether abortion should be legal in the first three months
of a pregnancy (1 = yes, 0 = no) and with 14 explanatory variables. The response and the
explanatory variables in glmnet must be in separate arrays of type ’float64’, using only the
variables to be employed in the model. In our case, we therefore drop the variables subject,
abor and life from the Students data frame. Using cross validation, the smoothing pa-
rameter that minimizes the mean prediction error is saved as lambda max , and the value
from the one-standard-error rule is saved as lambda best . The latter is used for estimates
and predictions unless the user selects an alternative value. The results shown next utilize
it:

In [1]: conda install -c conda-forge glmnet

In [2]: import pandas as pd

...: import numpy as np

...: import matplotlib.pyplot as plt

...: from glmnet import LogitNet

In [3]: Students=pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Students.dat’,sep=’\s+’)

...: y = Students.abor

...: x = Students.drop([’subject’, ’abor’, ’life’], axis = 1).astype(’float64’)

In [4]: fit = LogitNet() # ElasticNet() for regularized linear model

...: fit = fit.fit(x, y)

In [5]: print(fit.intercept_)

2.3671347098687052

In [6]: print(fit.coef_) # default: one std. error rule for smoothing.

[[ 0. 0. 0. 0. 0. 0.

0. 0. 0. 0. 0. 0.

-0.25995012 -0.18310286 0. ]] # only ideol and relig have

# non-zero estimates

In [7]: print(fit.lambda_best_) # smoothing parameter for one se rule

[0.12677869]

In [8]: print(fit.lambda_max_) # smoothing to minimize prediction error

0.037826288644684083 # less smoothing

In [9]: p = fit.predict(x) # predict abortion response category

...: prob = fit.predict_proba(x) # probability estimates

The plot of lasso model parameter estimates as function of the smoothing parameter
log(λ), shown in Figure B6.3, is similar to Figure 7.9 of the book and is derived as follows:

In [10]: lambdas = fit.lambda_path_

...: betas = fit.coef_path_

...: n=betas.shape; n

Out[10]: (1, 15, 84)

In [11]: fig, ax = plt.subplots()

...: for i in range(1,n[1]):

...: ax.plot(np.log10(lambdas),betas[0,i,])

...: # ax.set_xscale(’log’)

...: # ax.set_xlim(ax.get_xlim()[::-1]) # reverse axis

...: plt.axvline(x=np.log10(fit.lambda_best_), ymin=betas.min(), ymax=

betas.max(), linestyle=’dashed’, color=’black’, linewidth=0.7)

...: plt.axvline(x=np.log10(fit.lambda_max_), ymin=betas.min(), ymax=

betas.max(), linestyle=’dotted’, color=’red’, linewidth=0.7)

...: plt.xlabel(’lambda’)

2See https://pypi.org/project/glmnet

https://pypi.org/project/glmnet


66 CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS

...: plt.ylabel(’coefficients’)

...: plt.axis(’tight’)

...: plt.show()

FIGURE B6.3: Plot of lasso model parameter estimates for predicting opinion on legalized
abortion for the student survey, as function of the smoothing parameter log(λ). The black
dashed and dotted red lines indicate the λ value suggested by one-st.dev. error rule and by
3-fold cross-validation, respectively.

By default the LogitNet() function applies 3-fold cross-validation. Changing this to 10-
fold, we obtain the lasso parameter estimates using the best λ by 10-fold cross-validation.

In [12]: fit = LogitNet(n_splits=10)

...: fit = fit.fit(x, y)

In [13]: print(fit.intercept_)

2.6606674571327993

In [14]: print(fit.coef_)

[[ 0. 0. 0. 0. 0. 0.

0. 0. 0.08637701 0. 0. 0.

-0.37772893 -0.32340613 0. ]]

In [15]: print(fit.lambda_best_)

[0.07962071]

In [16]: print(fit.lambda_max_)

0.0661025136734736

In [16]: fit = LogitNet(n_splits=10, cut_point=0.0661025136734736)

...: fit = fit.fit(x, y)

In [17]: print(fit.intercept_)

2.696921632490962

In [18]: print(fit.coef_)

[[ 0. 0. 0. 0. 0. 0.

0. 0. 0.13995022 0. 0. 0.

-0.42388451 -0.36032689 0. ]]

In [19]: print(fit.lambda_best_)

[0.06610251]

In [20]: print(fit.lambda_max_)

0.0661025136734736

Alternatively, penalized logistic regression can be fitted in the scikit-learn library,
which is built on NumPy, SciPy, and matplotlib. It is designed for machine learning appli-
cations of classification, clustering and penalized regression problems.



8

CHAPTER 8: PYTHON FOR CLASSIFICATION
AND CLUSTERING

B8.1 Linear Discriminant Analysis

We illustrate a linear discriminant analysis (LDA) for the example in Section 8.1.2 of
whether female horseshoe crabs have male satellites (y = 1, yes; y = 0, no). That section
notes that it is sufficient to use weight or carapace width together with color as explana-
tory variables, and here we use width and color. In python, LDA can be implemented in
sklearn. Notice that sklearn requires the the response variable to be a numpy array (y)
and the explanatory variables to be another numpy array (X). We find the linear discrim-
inant function,1 the prediction for Y and the posterior probabilities for the two categories
of Y at a particular setting of the explanatory variables, and then show how to find these
for the horseshoe crabs in the sample:

In [1]: import pandas as pd

...: import numpy as np

...: import matplotlib.pyplot as plt

In [2]: Crabs = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Crabs.dat’, sep=’\s+’)

In [3]: y = np.asarray(Crabs[’y’]) # we form X so it has only width and color

...: X = np.asarray(Crabs.drop([’crab’,’sat’,’y’,’weight’,’spine’], axis=1))

...: from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

...: lda = LinearDiscriminantAnalysis(priors=None)

...: lda.fit(X, y)

In [4]: lda.coef_

Out[4]: array([[ 0.429729, -0.552606]]) # coefficients of linear discriminant function

In [5]: lda.intercept_

Out[5]: array([-9.22893006])

In [6]: lda.score(X, y) # mean classification error

Out[6]: 0.7283236994219653

In [7]: print(lda.predict([[30, 3]])) # predict y at x1 = 30, x2 = 3

[1] # predicted y = 1 (yes for satellites) at width = 30, color = 3

In [8]: print(lda.predict_proba([[30, 3]]))

[[0.11866592 0.88133408]] # posterior probabilities for y=0 and y=1

# Fisher’s Discriminant Function value at the point X=(30,3):

In [9]: print(lda.decision_function([[30, 3]]))

[2.00512458]

# category prediction and associated probabilities for the sample:

In [10]: y_pred = lda.predict(X)

...: y_pred_prob = lda.predict_proba(X)

In [11]: print(y_pred)

[1 0 1 0 1 0 1 0 0 1 0 1 1 0 1 1 1 1 0 1 0 1 0 1 0 0 1 1 1 1 1 1 1 1 1 0 1

1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 0 0 1

0 0 1 1 1 1 0 1 0 1 1 1 1 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1

0 1 1 1 0 0 0 1 1 0 0 1 1 1 1 0 1 1 0 1 1 1 1 1 1]

1The linear discriminant coefficients provided by the default singular value decomposition solver
(solver=’svd’) differ slightly from those found by R, but the estimated probabilities are the same.

67



68 Agresti and Kateri (2022): 8. R-Web Appendix

In [12]: print(y_pred_prob) # estimates of prob. [P(Y=0),P(Y=1)], shown only for two crabs

[0.1385732 0.8614268 ] # crab 1 had width x1 = 28.3, color x2 = 2

[0.77168388 0.22831612] # crab 2 had width x1 = 22.5, color x2 = 3

The reported predictions and posterior probabilities take the prior probability π0 for P (Y =

1) to be the default value, which is the sample proportion with y = 1. You can set an
alternative, such as by replacing priors=None with priors = (0.5, 0.5).

A scatterplot of the explanatory variable values can show the actual y values and use
a background color to show the predicted value. This plot is shown in Figure B8.1 and is
derived by the following code which is based on functions provided in the scikit learn

web-sides:

In [13]: from matplotlib import colors

...: def plot_data(lda, X, y, y_pred):

...: splot = plt.subplot()

...: plt.title(’ ’)

...: plt.ylabel(’color’)

...: plt.xlabel(’width’)

...:

...: tp = (y == y_pred) # True Positive

...: tp0, tp1 = tp[y == 0], tp[y == 1]

...: X0, X1 = X[y == 0], X[y == 1]

...: X0_tp, X0_fp = X0[tp0], X0[~tp0]

...: X1_tp, X1_fp = X1[tp1], X1[~tp1]

...:

...: # class 0: dots

...: plt.scatter(X0_tp[:, 0], X0_tp[:, 1], marker=’.’, color=’red’)

...: plt.scatter(X0_fp[:, 0], X0_fp[:, 1], marker=’x’,

...: s=20, color=’#990000’) # dark red

...:

...: # class 1: dots

...: plt.scatter(X1_tp[:, 0], X1_tp[:, 1], marker=’.’, color=’blue’)

...: plt.scatter(X1_fp[:, 0], X1_fp[:, 1], marker=’x’,

...: s=20, color=’#000099’) # dark blue

...:

...: # class 0 and 1 : areas

...: nx, ny = 200, 100

...: x_min, x_max = plt.xlim()

...: y_min, y_max = plt.ylim()

...: xx, yy = np.meshgrid(np.linspace(x_min, x_max, nx),

...: np.linspace(y_min, y_max, ny))

...: Z = lda.predict_proba(np.c_[xx.ravel(), yy.ravel()])

...: Z = Z[:, 1].reshape(xx.shape)

...: plt.pcolormesh(xx, yy, Z, cmap=’coolwarm_r’,

...: norm=colors.Normalize(0., 1.), zorder=0)

...: plt.contour(xx, yy, Z, [0.5], linewidths=2., colors=’white’)

...:

...: # means

...: plt.plot(lda.means_[0][0], lda.means_[0][1],

...: ’<’, color=’red’, markersize=10, markeredgecolor=’red’)

...: plt.plot(lda.means_[1][0], lda.means_[1][1],

...: ’>’, color=’blue’, markersize=10, markeredgecolor=’blue’)

...:

...: return splot

...:

In [14]: plot_data(lda, X, y, y_pred) # call of the function

B8.1.1 Predictive Power

Evaluation of the quality of prediction achieved by a LDA or a logistic regression model is
most frequently summarized in the classification table and visualized by the ROC curves



Linear Discriminant Analysis 69

FIGURE B8.1: Scatterplot matrix for width and color of the female crabs data with the
prediction areas marked (0:red, 1: blue). Blue (red) points indicate the correct predicted
y=1 (y=0) cases, while x indicate the corresponding false predicted cases.

(see Section 8.1.3). Measures for evaluation of the predicted classification are provided in
the sklearn.metrics module, as illustrated below for the crabs classification problem,
analyzed either by LDA or logistic regression:

In [15]: from sklearn.metrics import confusion_matrix

...: confusion_matrix = confusion_matrix(y, y_pred)

...: print(confusion_matrix)

[[29 33] # mean classification error lda.score(X,y) = (29+97)/173

[14 97]]

In [16]: from sklearn.model_selection import cross_val_score

...: crv = cross_val_score(lda, X,y, cv=10); crv

Out[16]: # score for each of the 10 "folds"

array([0.78947368, 0.77777778, 0.70588235, 0.70588235, 0.76470588,

0.76470588, 0.76470588, 0.52941176, 0.76470588, 0.70588235])

In [17]: classif_accuracy = np.mean(crv); classif_accuracy

Out[17]: 0.7273133814929481

In [18]: import warnings

...: warnings.filterwarnings("ignore")

...: from sklearn import metrics

...: print(metrics.classification_report(y, y_pred, digits=4))

precision recall f1-score support

0 0.6744 0.4677 0.5524 62

1 0.7462 0.8739 0.8050 111

accuracy 0.7283 173

macro avg 0.7103 0.6708 0.6787 173

weighted avg 0.7204 0.7283 0.7145 173

The precision for each response category i, i = 0,1, is the ratio tpi
tpi+fpi where tpi and fpi

is the number of true positives and false positives, respectively, for the i-th category. The
recall is the ratio tpi

tpi+fni
, where fni is the number of false negatives for the i-th category,

i.e. it expresses the ability of detecting all y=1 cases. The F-beta (f1) score is a weighted
harmonic mean of precision and recall and lies in the interval [0,1], with 1 corresponding
to its best value.

The ROC curve can be plotted using the roc curve function of the sklearn.metrics

module. The required arguments are the observed category membership for our data (y)
and the predicted probabilities for y=1 (y pred prob[:,1]). Next, we provide code for con-



70 Agresti and Kateri (2022): 8. R-Web Appendix

structing the ROC curve and finding the area under the curve to summarize the predictive
power:

In [19]: def plot_roc(fpr, tpr):

...: splot= plt.subplot()

...: roc_auc = auc(fpr, tpr)

...: plt.figure(1, figsize=(12,6))

...: plt.plot(fpr, tpr, lw=2, alpha=0.7, color="red",

label=’AUC = %0.4f’ % (roc_auc))

...: plt.plot([0, 1], [0, 1], linestyle=’--’,lw=0.7,color=’k’,alpha=.4)

...: plt.xlim([-0.05, 1.05])

...: plt.ylim([-0.05, 1.05])

...: plt.xlabel(’1-Specificity’)

...: plt.ylabel(’Sensitivity’)

...: plt.legend(loc="lower right")

...: # plt.grid() # to add grid to the plot (here commented out)

...: return splot

This function is called next for the predicted probabilities of the (i) LDA and (ii) logistic
regression models fitted above:

In [20]: from sklearn.metrics import roc_curve

...: from sklearn.metrics import auc

In [21]: fpr, tpr, thresholds = roc_curve(y, y_pred_prob[:,1])

...: roc_auc = auc(fpr, tpr); roc_auc # AUC (LDA)

Out[21]: 0.7640947399011915

In [22]: fpr1, tpr1, thresholds1 = roc_curve(y, y_pred_lgr_prob[:,1])

...: roc_auc1 = auc(fpr1, tpr1); roc_auc1 # AUC (logistic regression)

Out[22]: 0.7242807323452484

In [23]: plot_roc(fpr, tpr) # call of plot function for LDA predictions

In [24]: plot_roc(fpr1, tpr1) # call for logistic regression predictions

The ROC curves for LDA and logistic regression are shown in Figure B8.2.

FIGURE B8.2: ROC curves for the female crabs category membership prediction (have
satellites or not), based on the variables width and color, for LDA (left) and logistic
regression (right).

The ROC curve is also relevant for predictions made using logistic regression. Next we
fit that model to these data and find the ROC curve and the area under it:

In [25]: import statsmodels.api as sm

...: import statsmodels.formula.api as smf

In [26]: fit = smf.glm(’y ~ width + color’, family = sm.families.Binomial(),

data=Crabs).fit()

In [27]: print(fit.summary())



Classification Trees and Neural Networks for Prediction 71

Generalized Linear Model Regression Results

coef std err z P>|z| [0.025 0.975]

----------------------------------------------------------------------

Intercept -10.0708 2.807 -3.588 0.000 -15.572 -4.569

width 0.4583 0.104 4.406 0.000 0.254 0.662

color -0.5090 0.224 -2.276 0.023 -0.947 -0.071

======================================================================

In [28]: predictions = fit.predict()

In [29]: fpr, tpr, thresholds = roc_curve(y, predictions)

In [30]: auc(fpr, tpr) # area under ROC curve

Out[30]: 0.762205754141238

In [31]: plot_roc(fpr, tpr) # plots the ROC curve

B8.2 Classification Trees and Neural Networks for Prediction

Classification trees can be obtained by the class DecisionTreeClassifier of sklearn.trees,
which also takes as input an array X of size (n, p), holding the explanatory variables (train-
ing sample), where n is the sample size and p the number of explanatory variables (features)
and an one-dimensional array y of integers, of size n, holding the response categories (class
labels of the training sample). Similar to other classification methods, class membership
predictions and measures of accuracy can be derived. The default criterion used for mea-
suring the quality of split is the Gini imputity (criterion=’gini’) or an entropy measure
corresponding to maximizing the binomial log-likelihood function (criterion=’entropy’).
There are further parameters that control the pruning of a classification tree. For example,
for the crabs data below, we ask for a tree with maximal number of leaf (terminal) nodes
equal to 3:

# continuing with Crabs file and X and y arrays previously formed

In [32]: from sklearn import tree

...: clf = tree.DecisionTreeClassifier(criterion = ’gini’, max_leaf_nodes=3).fit(X, y)

In [33]: X_names=[’width’, ’color’]

...: y_names=[’no’, ’yes’]

...: fig, axes = plt.subplots(nrows = 1, ncols = 1, figsize = (4,4), dpi=300)

...: # classification tree shown in figure:

...: tree.plot_tree(clf, feature_names = X_names, class_names = y_names, filled=True)

In [34]: from sklearn import metrics

...: y_pred = clf.predict(X)

...: print(’Accuracy:’, metrics.accuracy_score(y, y_pred))

Accuracy: 0.716763006 # proportion correct = (44 + 75 + 5)/173 = 0.717

Figure B8.3 shows the classification tree obtained, which surprisingly differs somewhat from
the one in Section 8.1.4 using R with the same (gini) criterion. It predicts that the crabs
that have satellites are the ones of width greater than 25.85 cm that are in color classes 1,
2, and 3, of which the terminal node tells us that 13 did not have satellites and 75 did. For
these data, the overall proportion of correct predictions with this tree is (44 + 75 + 5)/173
= 0.717. The tree constructed with three terminal nodes by R, shown in Figure 8.2, also
predicted satellites for horseshoe crabs of color 4 with width above 25.85 cm and those of
colors 1 and 2 with width less than 25.85 cm.

Another option is to use the classifier DecisionTreeRegressor that uses as crite-
rion the mean square error and otherwise has further parameters, analogous to those of
DecisionTreeClassifier.

A neural network can be fitted by the MLPClassifier classifier of sklearn.neural network,
as shown below for the crabs data set. We repeat the analysis of Section 8.1.6, resulting to



72 Agresti and Kateri (2022): 8. R-Web Appendix

FIGURE B8.3: Classification tree for whether female crabs have satellites (ŷ = 1, in blue)
or not (ŷ = 0, in orange).

classifications of comparable accuracy. We provide the classification tables for two threshold
probabilities, the standard (0.5) and 0.64. Notice that in sklearn there exist no parameter
controlling the threshold. For this, we provide next a function for adjusting it. The default
solver used in MLPClassifier is ’adam’ (a stochastic gradient-based optimizer). We use for
this application the ’lbfgs’ optimizer (a quasi-Newton type), since it is more adequate for
small data sets in terms of convergence and performance.

In [35]: from sklearn.neural_network import MLPClassifier

...: clf = MLPClassifier(solver=’lbfgs’)

In [36]: from sklearn.model_selection import train_test_split

...: # use 2/3 to train, 1/3 to test

...: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33)

In [37]: clf.fit(X_train, y_train)

...: y_pred = clf.predict(X_test) # y predictions for test data

...: y_pred_prob = clf.predict_proba(X_test)

In [38]: from sklearn.metrics import confusion_matrix

...: confusion_matrix = confusion_matrix(y_test, y_pred)

...: print(’classification table:’)

...: print(confusion_matrix)

classification table:

[[10 7] # accuracy proportion (10 + 38)/58 = 0.828

[ 3 38]] # this is random, depending on which 2/3 chosen for training

# function to change the threshold from p=0.5 to t:

In [39]: def prob_threshold(y_pred_prob, t):

...: n=len(y_pred_prob)

...: y_pred_adj=[]

...: y_pred_adj= [0 for x in range(n)]

...: for i in range(1,n):

...: if y_pred_prob[i-1,1] >= t:

...: y_pred_adj[i-1]=1

...: return y_pred_adj

# analysis using the sample proportion with y = 1 (0.64) as the threshold

In [40]: y_pred_adj = prob_threshold(y_pred_prob, 0.64) # y=0 for prob<0.64

In [41]: from sklearn import metrics



Cluster Analysis 73

...: print(’Accuracy:’, metrics.accuracy_score(y_test, y_pred))

...: print(’Accuracy (adj. threshold):’,

metrics.accuracy_score(y_test, y_pred_adj))

Accuracy: 0.8275862068965517

Accuracy (adj. threshold): 0.7068965517241379

In [42]: confusion_matrix_adj = confusion_matrix(y_test, y_pred_adj)

...: print(’classification table (adjusted threshold):’)

...: print(confusion_matrix_adj)

classification table (adjusted threshold):

[[15 2]

[15 26]]

B8.3 Cluster Analysis

Hierarchical clustering can be performed by the Aglomerative Clustering object of
sklearn.cluster, offering the standard linkage methods (‘ward’, ‘complete’, ’average’,
‘single’). The norm used to compute the linkage can be chosen among ‘euclidean’, ‘l1’,
‘l2’, ‘manhattan’, ‘cosine’, and ‘precomputed’, the last requiring a distance matrix as input
for the fit method. For the ‘ward’ linkage, which is the default, only ‘euclidean’ is accepted.
For the criterion to stop the clustering, one can specify the number of desired clusters or
specity a linkage distance threshold. K-means clustering is berformed by the KMeans object.

We illustrate hierarchical clustering with ‘average linkage’ and ‘manhattan’ distance for
the U.S. Presidential elections example of Section 8.2.3. The dendrogram is constructed in
scipy.cluster.hierarchy.

In [1]: import pandas as pd

...: from sklearn.cluster import AgglomerativeClustering

...: Elections = pd.read_csv(’http://stat4ds.rwth-aachen.de/data/Elections2.dat’,

sep=’\s+’)

...: Elections.head(2)

Out[1]:

number state e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

0 1 Arizona 0 0 0 0 1 0 0 0 0 0

1 2 California 0 0 0 1 1 1 1 1 1 1

In [2]: y = np.array(Elections[’state’])

...: state = [’Arizona’,’California’,’Colorado’,’Florida’,’Illinois’,’Massachusetts’,

’Minnesota’,’Missouri’,’NewMexico’,’NewYork’,’Ohio’,’Texas’,’Virginia’,’Wyoming’]

...: X = np.array(Elections.drop([’number’,’state’], axis=1))

...: clustering = AgglomerativeClustering(n_clusters = None, affinity = ’manhattan’,

linkage = ’average’, distance_threshold = 0.01).fit(X)

In [3]: cluster = clustering.labels_

In [4]: %matplotlib inline

...: import matplotlib.pyplot as plt

...: import scipy.cluster.hierarchy as sch

...: # Calculate the distance matrix

...: Z = sch.linkage(X, method=’average’, metric=’cityblock’)

...: plt.figure(figsize=(10, 7))

...: sch.dendrogram(Z, orientation=’top’, # dendrogram

...: labels=state, leaf_rotation=80,

...: distance_sort=’descending’,show_leaf_counts=False)

The heatmap with the dendrogram for cluster analysis can be constructed by
clustermap of seaborn. Though the graph is produced when applied on the np.array

X, it is better to apply it on a data frame, so that labels (here, the states) can be added on
the plot. For this, we define next a data frame, X1, which has the states as index:



74 Agresti and Kateri (2022): 8. R-Web Appendix

In [6]: import seaborn as sns

...: sns.set(color_codes=True)

In [7]: X1=Elections.drop([’number’,’state’], axis=1)

...: X1.index=state

In [8]: g = sns.clustermap(X1, metric=’cityblock’, method=’average’,

...: figsize=(7, 5), col_cluster=False,

...: dendrogram_ratio=(.1, .2), cbar_pos=(0, .2, .03, .4),

...: xticklabels=True, # adds variables as labels

...: yticklabels=True, # adds states as labels

...: cmap=’coolwarm’) # heatmap with dendrogram

The above derived dendrogram and heatmap with dentrogram are shown in Figure B8.4.

Flo
rid

a

Oh
io

Te
xa

s
W
yo

m
in
g

Ar
izo

na
M
iss

ou
ro

Co
lo
ra
do

Vi
rg
in
ia

M
in
ne

so
ta

M
as

sa
ch

us
et
ts

Ne
wY

or
k

Ne
wM

ex
ico

Ca
lif
or
ni
a

Illi
no

is

0

1

2

3

4

5

6

�� �� �� �� �� �� �� �	 �
 ��� ���

�"#���
���"
��(�$
�)" �!�
�#�*"!�
��$$"&#"
�"�"#��"
��#��!��
��!!�$"%�
��$$���&$�%%$
��'�"#�
��'��(��"
�����"#!��
����!"�$

���

���

���

���

��	

���

FIGURE B8.4: Dendrogram and heatmap with dendrogram for the cluster analysis of the
election data.


	CHAPTER 0: BASICS OF PYTHON
	Python Preliminaries
	Data Structures and Data Input

	CHAPTER 1: PYTHON FOR DESCRIPTIVE STATISTICS
	Random Number Generation
	Summary Statistics and Graphs for Quantitative Variables
	Descriptive statistics for carbon dioxide emissions
	Side-by-side box plots for U.S. and Canadian murder rates

	Descriptive Statistics for Bivariate Quantitative Data
	Descriptive Statistics for Bivariate Categorical Data
	Simulating Samples from a Bell-Shaped Population

	CHAPTER 2: PYTHON FOR PROBABILITY DISTRIBUTIONS
	Simulating a Probability as a Long-Run Relative Frequency
	Python Functions for Discrete Probability Distributions
	Binomial Distribution
	Poisson Distribution

	Python Functions for Continuous Probability Distributions
	Uniform Distribution
	Exponential and Gamma Distributions
	Normal Distribution
	Q-Q Plots and the Normal Quantile Plot

	Expectations of Random Variables
	Binomial distribution
	Uniform Distribution
	Finding the Correlation For a Joint Probability Distribution


	CHAPTER 3: PYTHON FOR SAMPLING DISTRIBUTIONS
	Simulation to Illustrate a Sampling Distribution
	Law of Large Numbers

	CHAPTER 4: PYTHON FOR ESTIMATION
	Confidence Intervals for Proportions
	The t Distribution
	Confidence Intervals for Means
	Confidence Intervals Comparing Means and Comparing Proportions
	Bootstrap Confidence Intervals
	Bayesian Posterior Intervals for Proportions and Means

	CHAPTER 5: PYTHON FOR SIGNIFICANCE TESTING
	Significance Tests for Proportions
	Chi-Squared Tests Comparing Multiple Proportions in Contingency Tables
	Significance Tests for Means
	Significance Tests Comparing Means
	Anorexia Example: Comparison of Therapy and Control Groups

	The Power of a Test in Python
	Nonparametric Statistics: Permutation Test and Wilcoxon Test
	Kaplan–Meier Estimation of Survival Functions

	CHAPTER 6: PYTHON FOR LINEAR MODELS
	Fitting Linear Models
	The Correlation and R-Squared
	Diagnostics: Residuals and Cook's Distances for Linear Models
	Statistical Inference and Prediction for Linear Models
	Categorical Explanatory Variables in Linear Models
	Multiple Comparisons of Means: Bonferroni and Tukey Methods
	Models with Categorical and Quantitative Explanatory Variables
	Interaction with Categorical and Quantitative Explanatory Variables

	Bayesian Fitting of Linear Models

	CHAPTER 7: PYTHON FOR GENERALIZED LINEAR MODELS
	GLMs with Identity Link
	Example: Normal and Gamma GLMs for Covid-19 Data

	Logistic Regression: Logit Link with Binary Data
	Separation and Bayesian Fitting in Logistic Regression
	Poisson Loglinear Model for Counts
	Modeling Rates

	Negative Binomial Modeling of Count Data
	Regularization: Penalized Logistic Regression Using the Lasso

	CHAPTER 8: PYTHON FOR CLASSIFICATION AND CLUSTERING
	Linear Discriminant Analysis
	Predictive Power

	Classification Trees and Neural Networks for Prediction
	Cluster Analysis


